GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 16 (1997), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Morphological structures and the occurrence of sea-ice sediments and ice-related algae at the ice floe-water column interface were studied by video observations in summer 1995. Recordings at twelve stations in the northern Laptev Sea and the adjacent Arctic Ocean showed large variations. On a medium-scale (metres), level ice and deformed floes as well as whole rafted and stacked floes were found. At the underside of floes, small-scale structures (centimetres such as bulges, depressions and holes were observed. The surface and sides of rafted floes sometimes had downward running grooves. Sediment inclusions occurred in diffuse or concentrated forms as well as in parallel streaks. Ice-related algae were visible as green areas at the underside of floes or as threads haniging into the water column. The distribution of sediments and algae was patchy. Some processes which might lead to the observed structures are suggested.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sympagic (=ice-associated) amphipod Gammarus wilkitzkii usually lives attached to the underside of Arctic sea ice. During an expedition to the Greenland Sea in May/June 1997, high numbers of this species were found in pelagic Rectangular Midwater Trawl catches (0–500 m water depth) in an ice-free area, 35–42 km away from the ice edge. The amphipods seemed to have maintained position in the water column for at least 4 days. Mean biomass data (length: 2.9 cm, organic content: 73% dry mass), gut fullness (〉50% in 85% of specimens) and sex ratio (females:males = 1:1.5) of these amphipods were very similar to values for under-ice populations. Due to their relatively high body density (mean: 1.134 g cm−3), the energy demand for swimming was assumed to be high. Measurements of oxygen consumption of swimming and resting amphipods (8.8 and 4.0 J g wet mass−1 day−1, respectively) suggested that, from an energetic point of view, G. wilkitzkii would maintain position in an ice-free water column for the time period.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 21 (1999), S. 71-79 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sub-ice habitat and fauna in the Laptev Sea and the adjacent Arctic Ocean were investigated during the “Polarstern” cruise ARK XI/1 in summer 1995. At the ice-water interface a thin thermo- and halocline developed at many stations due to melting processes. In the lower centi- to decimetres of the ice, an accumulation of organic matter was found (particulate organic carbon: 1.9 mg l−1, chl a: 3.3 μg l−1) that may have provided a food source for the fauna. The water layer directly beneath the ice was inhabited by high numbers of various nauplii (130–23911 ind. m−3), and two ecological groups, the pelagic sub-ice fauna that originates from the surface water plankton, and the sympagic sub-ice fauna that migrates into this boundary layer from the ice interior. The pelagic fauna dominated the sub-ice community both in terms of species number and abundance. Both groups mainly comprised small copepods (e.g. Oithona similis, Oncaea borealis, Pseudocalanus spp., Halectinosoma spp., Tisbe spp.), but foraminifers and pteropods, for example, also occurred regularly. Diversity was generally low. Factors influencing the composition and abundance of the sub-ice fauna were most likely water depth, salinity and sea-ice sediments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 426 (2000), S. 89-96 
    ISSN: 1573-5117
    Keywords: faecal pellets ; Amphipoda ; sea ice ; feeding ; carbon flux ; Greenland Sea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The underside of Arctic sea ice is inhabited by several autochthonous amphipod species (Apherusa glacialis, Onisimus spp., Gammarus wilkitzkii). The amphipods graze on ice-bound organic matter, such as ice algae, detritus and ice fauna, and release faecal pellets into the underlying water column, thus forming a direct link between the sea ice and the pelagic ecosystems. Experiments on faecal pellet production rates showed species-specific differences, which were related to size of the animals. The smallest species, A. glacialis, produced the highest mean number of pellets (15.4 pellets ind.-1 d-1), followed by Onisimus spp. (2.7 pellets ind.-1 d-1) and the largest species, G. wilkitzkii (1.1 pellets ind.-1 d-1). Relative carbon content of the pellets was very similar in all species (21.2–22.6% dry mass). Juvenile amphipods (Onisimus spp., G. wilkitzkii) produced more pellets with less POC than adults. Based on field determinations of the POC concentration in the lowermost 2 cm of the sea ice (mean: 36.4 mg C m-2) and mean amphipod abundances (A. glacialis: 33.8 ind. m-2, Onisimus spp.: 0.5 ind. m-2, G. wilkitzkii: 9.4 ind. m-2) in the Greenland Sea in summer 1994, the amount of POC transferred from the ice to the water by faecal pellet production was estimated (0.7 mg C m-2 d-1 or almost 2% of ice-bound carbon). Since this process probably takes place in all ice-covered Arctic regions as well as during all seasons, grazing and pellet production by under-ice amphipods contributes significantly to matter flux across the ice/water interface.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 83(1), pp. 17-33, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Deep Sea Research Part II: Topical Studies in Oceanography, 55(8-9), pp. 1015-1023, ISSN: 0967-0645
    Publication Date: 2019-07-17
    Description: During three Antarctic expeditions (2004, ANT XXI-4 and XXII-2; 2006, ANT XXIII-6) with the German research icebreaker R/V Polarstern, six different amphipod species were recorded under the pack ice of the Weddell Sea and the Lazarev Sea. These cruises covered Austral autumn (April), summer (December) and winter (August) situations, respectively. Five of the amphipod species recorded here belong to the family Eusiridae (Eusirus antarcticus, E. laticarpus, E. microps, E. perdentatus and E. tridentatus), while the last belongs to the Lysianassidea, genus Cheirimedon (cf. femoratus). Sampling was performed by a specially designed under-ice trawl in the Lazarev Sea, whereas in the Weddell Sea sampling was done by scuba divers and deployment of baited traps. In the Weddell Sea, individuals of E. antarcticus and E. tridentatus were repeatedly observed in situ during under-ice dives, and single individuals were even found in the infiltration layer. Also in aquarium observations, individuals of E. antarcticus and E. tridentatus attached themselves readily to sea ice. Feeding experiments on E. antarcticus and E. tridentatus indicated a carnivorous diet. Individuals of the Lysianassoid Cheirimedon were only collected in baited traps there. Repeated conventional zooplankton hauls performed in parallel to this study did not record any of these amphipods from the water column. In the Lazarev Sea, E. microps, E. perdentatus and E. laticarpus were regularly found in under-ice trawls. We discuss the origin and possible sympagic life style of these amphipods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...