GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The influence of 11 environmental variables on benthic macroinvertebrate communities was examined in seven glacier-fed European streams ranging from Svalbard in the north to the Pyrenees in the south. Between 4 and 11 near-pristine reaches were studied on each stream in 1996–97.2. Taxonomic richness, measured at the family or subfamily (for Chironomidae) levels for insects and higher levels for non-insects, increased with latitude from Svalbard (3 taxa) to the Pyrenees (29 taxa).3. A Generalized Additive Model (GAM) incorporating channel stability [Pfankuch Index (PFAN)], tractive force, Froude number (FROU), water conductivity (COND), suspended solids (SUSP) concentration, and maximum temperature explained 79% of the total deviance of the taxonomic richness per reach. Water temperature and the PFAN of stability made the highest contribution to this deviance. In the model, richness response to temperature was positive linear, whereas the response to the PFAN was bell-shaped with an optimum at an intermediate level of stability.4. Generalized Additive Models calculated for the 16 most frequent taxa explained between 25 (Tipulidae) and 79% (Heptageniidae) of the deviance. In 10 models, more than 50% of the deviance was explained and 11 models had cross-validation correlation ratios above 0.5. Maximum temperature, the PFAN, SUSP and tractive force (TRAC) were the most frequently incorporated explanatory variables. Season and substrate characteristics were very rarely incorporated.5. Our results highlight the strong deterministic nature of zoobenthic communities in glacier-fed streams and the prominent role of water temperature and substrate stability in determining longitudinal patterns of macroinvertebrate community structure. The GAMs are proposed as a tool for predicting changes of zoobenthic communities in glacier-fed streams under climate or hydrological change scenarios.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 139 (1998), S. 113-124 
    ISSN: 1573-5052
    Keywords: Aquatic macrophyte ; GIS habitat modeling ; Gradient analysis ; Generalized Additive Models ; Potamogeton ; Characea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The distribution of submerged macrophytes in the littoral zone of Lake Geneva (Switzerland) was modeled from bathymetry, wave exposure, current strength, water quality, soil type and harvesting practice. Generalized Additive Models (GAM) were used to identify the responses of three Potamogeton species and Chara sp. to these environmental parameters. The maps of original data and the spatial predictions were processed in a Geographic Information System (GIS) database. The effect of the selected environmental variables on plant distribution is discussed in relation to species adaptive strategies. GIS and GAM appear as powerful tools to proceed from the description of species response curves to environmental gradients toward the spatial predictions of species distribution under changing environmental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...