GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    Ithaca, NY : Cornell Univ. | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publikationsdatum: 2016-08-23
    Schlagwort(e): ddc:600
    Repository-Name: Wuppertal Institut für Klima, Umwelt, Energie
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-08-23
    Beschreibung: On the one hand, biofuels may provide environmental and social benefits, for instance, when local communities in developing countries are supplied with power and process energy from oil producing plants, in particular when they are grown on land which is not suited for food production. On the other hand, the ongoing expansion of large scale energy farming for transport biofuels can lead to various environmental and social problems. Corn production for ethanol (additive to petrol) for instance resulted in nutrient pollution of the Mississippi basin and the Gulf of Mexico. The growing demand of transport biofuels in Europe can only be met by increasing imports. This contributes to the conversion of grasslands, savannahs and forests in the tropics, losses of biodiversity and additional green house gas emissions. Even if the use of biomass for other purposes, for instance, the combined production of electricity and heat usually provides a better greenhouse gas balance than transport biofuels, energy cropping remains problematic for various reasons. Whereas, when biomass is used for material purposes first, and the energy is recovered from the subsequent waste, a multiple dividend can be gained. The authors address a number of measures for improvement. They also recommend that in view of the complex circumstances of biofuel production and application, current policy mandates and targets for biofuels should be reconsidered. Biomass policies need to be integrated into a broader perspective of sustainable resource management.
    Schlagwort(e): ddc:600
    Repository-Name: Wuppertal Institut für Klima, Umwelt, Energie
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2016-08-23
    Schlagwort(e): ddc:600
    Repository-Name: Wuppertal Institut für Klima, Umwelt, Energie
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Nairobi : United Nations Environment Programme | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publikationsdatum: 2016-08-23
    Schlagwort(e): ddc:600
    Repository-Name: Wuppertal Institut für Klima, Umwelt, Energie
    Sprache: Englisch
    Materialart: report , doc-type:report
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 114 (2013): 149-163, doi:10.1007/s10533-013-9847-z.
    Beschreibung: Mobile sources are the single largest source of nitrogen emissions to the atmosphere in the US. It is likely that a portion of mobile-source emissions are deposited adjacent to roads and thus not measured by traditional monitoring networks, which were designed to measure longterm and regional trends in deposition well away from emission sources. To estimate the magnitude of near-source nitrogen deposition, we measured concentrations of both dissolved inorganic nitrogen (DIN) and total (inorganic + organic) dissolved nitrogen (TDN) in throughfall (i.e., the nitrogen that comes through the forest canopy) along transects perpendicular to two moderately trafficked roads on Cape Cod in Falmouth MA, coupled with measurements of both DIN and TDN in bulk precipitation made in adjacent open fields at the same transect distances. We used the TDN throughfall data to estimate total nitrogen deposition, including dry gaseous nitrogen deposition in addition to wet deposition and dry particle deposition. There was no difference in TDN in the bulk collectors along the transects at either site; however TDN in the throughfall collectors was always higher closest to the road and decreased with distance. These patterns were driven primarily by differences in the inorganic N and not the organic N. Annual throughfall deposition was 8.7 (+0.4) and 6.8 (+0.5) TDN - kg N ha-1 yr-1 at sites 10 m and 150 m away from the road respectively. We also characterized throughfall away from a non-road edge (power line right-of-way) to test whether the increased deposition observed near road edges was due to deposition near emission sources or due to a physical, edge effect causing higher deposition. The increased deposition we observed near roads was due to increases in inorganic N especially NH4 +. This increased deposition was not the result of an edge effect; rather it is due to near source deposition of mobile source emissions. We scaled these results to the entire watershed and estimate that by not taking into account the effects of increased gaseous N deposition from mobile sources we are underestimating the amount of N deposition to the watershed by 13% - 25%.
    Beschreibung: This research was supported by Woods Hole SeaGrant (grant NA06OAR4170021), NSF IGERT (grant DGE 0221658), an Edna Bailey Sussman Environmental Internship Award from Cornell University, and a Mellon Foundation award though Cornell University.
    Beschreibung: 2014-04-14
    Schlagwort(e): Nitrogen deposition ; Roadside ; Forest edges ; Throughfall
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosystems 16 (2013): 1550-1564, doi:10.1007/s10021-013-9701-0.
    Beschreibung: We examined controls of benthic dinitrogen (N2) fixation and primary production in oligotrophic lakes in Arctic Alaska, Toolik Field Station (Arctic Long-Term Ecological Research Site). Primary production in many oligotrophic lakes is limited by nitrogen (N), and benthic processes are important for whole-lake function. Oligotrophic lakes are increasingly susceptible to low-level, non-point source nutrient inputs, yet the effects on benthic processes are not well understood. This study examines the results from a whole-lake fertilization experiment in which N and P were added at a relatively low level (4 times natural loading) in Redfield ratio to a shallow (3 m) and a deep (20 m) oligotrophic lake. The two lakes showed similar responses to fertilization: benthic primary production and respiration (each 50–150 mg C m−2 day−1) remained the same, and benthic N2 fixation declined by a factor of three- to fourfold by the second year of treatment (from ~0.35 to 0.1 mg N m−2 day−1). This showed that the response of benthic N2 fixation was de-coupled from the nutrient limitation status of benthic primary producers and raised questions about the mechanisms, which were examined in separate laboratory experiments. Bioassay experiments in intact cores also showed no response of benthic primary production to added N and P, but contrasted with the whole-lake experiment in that N2 fixation did not respond to added N, either alone or in conjunction with P. This inconsistency was likely a result of nitrogenase activity of existing N2 fixers during the relative short duration (9 days) of the bioassay experiment. N2 fixation showed a positive saturating response when light was increased in the laboratory, but was not statistically related to ambient light level in the field, leading us to conclude that light limitation of the benthos from increasing water-column production was not important. Thus, increased N availability in the sediments through direct uptake likely caused a reduction in N2 fixation. These results show the capacity of the benthos in oligotrophic systems to buffer the whole-system response to nutrient addition by the apparent ability for significant nutrient uptake and the rapid decline in N2 fixation in response to added nutrients. Reduced benthic N2 fixation may be an early indicator of a eutrophication response of lakes which precedes the transition from benthic to water-column-dominated systems.
    Beschreibung: This project was supported by NSF-OPP 9732281, NSF-DEB 9810222, NSF-DEB 0423385, and by a Doctoral Dissertation Improvement Grant NSF-DEB 0206173. Additional funding was provided by the Small Grants Program through the NSF-IGERT Program in Biogeochemistry and Environmental Change at Cornell University.
    Schlagwort(e): Benthic ; Nitrogen fixation ; Primary production ; Oligotrophic ; Arctic ; Toolik
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1979
    Beschreibung: The rate of sulfate reduction in stands of dwarf Spartina alterniflora in the Great Sippewissett Salt Marsh is approximately 75 moles S04 m2 year-1. This is the highest rate reported for any natural ecosystem. Sulfate reduction is the most important form of respiration in the marsh and results in the annual consumption of 1800 g C m-2, approximately equivalent to net primary production. Sulfate reduction rates in the peat are high for at least three reasons: 1) the below-ground production of Spartina alterniflora provides a large, annual input of organic substrates over a depth of some 20 cm, 2) sulfate is rapidly resupplied to the peat in infiltrating tidal waters, so low sulfate concentrations never limit the rate of sulfate reduction, and 3) sulfide concentrations remain below toxic levels. The stable mineral pyrite is a major end-product of sulfate reduction in salt marsh peat while iron mono-sulfides are not. This is unlike most anoxic marine sediments and apparently results because iron mono-sulfides are undersaturated. The iron mono-sulfides are undersaturated in part because of the relatively low concentration of total soluble sulfides and in part because of the fairly low pH of the peat. Both of these conditions probably result from the activity of the Spartina roots. If the incorporation of 35S into pyrite were not measured, the S3504 reduction measurements would greatly underestimate the true rate of sulfate reduction. Pyrite acts largely as a temporary store of reduced. sulfur. The pyrite concentration of the peat undergoes seasonal changes. On an annual basis, the reduced sulfur which results from sulfate reduction is either re-oxidized to sulfate within the peat or is exported, much of it as thiosulfate or a similar intermediately reduced compound. Most of the energy which is originally in organic matters is stored in reduced sulfur compounds when the organic matter is respired by sulfate reducing bacteria. Consequently, the export of reduced sulfur compounds from the peat represents an energy export. The export of energy as reduced inorganic sulfur compounds is probably larger than the net above-ground production by Spartina. This is an important vector for moving some of the energy trapped by the below-ground production of Spartina to zones where it is available for coastal food webs.
    Beschreibung: Later support was from the National Science Foundation Grant DEB 78-03557.
    Schlagwort(e): Salt marshes ; Salt marsh ecology ; Sulphur ; Sulphates ; Pyrites
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: This paper is not subject to U.S. copyright. The definitive version was published in Estuaries and Coasts 35 (2012): 1285-1298, doi:10.1007/s12237-012-9515-x.
    Beschreibung: Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index– salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring– neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.
    Beschreibung: Funding was provided by the USGS Coastal and Marine Geology Program and by National Science Foundation Award #0420575 from the Biocomplexity/Coupled Biogeochemical Cycles Program.
    Schlagwort(e): Estuarine hydrodynamics ; Coastal groundwater discharge ; Total exchange flow ; Estuarine modeling ; Index-velocity method
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 9 (2011): 18–26, doi:10.1890/100008.
    Beschreibung: Nutrient fluxes to coastal areas have risen in recent decades, leading to widespread hypoxia and other ecological damage, particularly from nitrogen (N). Several factors make N more limiting in estuaries and coastal waters than in lakes: desorption (release) of phosphorus (P) bound to clay as salinity increases, lack of planktonic N fixation in most coastal ecosystems, and flux of relatively P-rich, N-poor waters from coastal oceans into estuaries. During eutrophication, biogeochemical feedbacks further increase the supply of N and P, but decrease availability of silica – conditions that can favor the formation and persistence of harmful algal blooms. Given sufficient N inputs, estuaries and coastal marine ecosystems can be driven to P limitation. This switch contributes to greater far-field N pollution; that is, the N moves further and contributes to eutrophication at greater distances. The physical oceanography (extent of stratification, residence time, and so forth) of coastal systems determines their sensitivity to hypoxia, and recent changes in physics have made some ecosystems more sensitive to hypoxia. Coastal hypoxia contributes to ocean acidification, which harms calcifying organisms such as mollusks and some crustaceans.
    Beschreibung: Funding was supplied in part by NOAA through the Coastal Hypoxia Research Program, by the NSF through the Biocomplexity Coupled Biogeochemical Cycles competition, and by DR Atkinson through an endowment given to Cornell University.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-11-19
    Schlagwort(e): ddc:600
    Repository-Name: Wuppertal Institut für Klima, Umwelt, Energie
    Sprache: Englisch
    Materialart: report , doc-type:report
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...