GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
  • Milton :Taylor & Francis Group,  (1)
Document type
  • GEOMAR Catalogue / E-Books  (1)
Source
Language
Years
DDC
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Artificial intelligence. ; Internet of things. ; Electronic books.
    Description / Table of Contents: The book discusses the major contributions in the Edge AI domain of IoT systems: heterogeneous micro clusters employed for processing data and for exploiting adopted AI algorithms for the predictive analysis and or prescription.
    Type of Medium: Online Resource
    Pages: 1 online resource (347 pages)
    Edition: 1st ed.
    ISBN: 9781003825142
    Series Statement: Advances in Computational Collective Intelligence Series
    DDC: 006.3
    Language: English
    Note: Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Abbreviations -- Part I Computational Intelligence: Edge AI Services -- Chapter 1 Edge Computational Intelligence: Fundamentals, Trends, and Applications -- 1.1 Introduction -- 1.2 Mainframe-Based Computing Model -- 1.3 PC File Server-Based Computing Model -- 1.4 C/S Architecture-Based Computing Model -- 1.5 Web and B/S Architecture-Based Computing Model -- 1.6 Mobile Devices-Centric Computing Model -- 1.7 Technologies-Based Computing Model -- 1.8 End-Edge-Cloud Computing Model -- 1.9 EC Trends -- 1.9.1 Heterogeneous Computing -- 1.9.2 Edge Intelligence (EI) -- 1.9.3 Edge Cloud Interface -- 1.9.4 5G + Edge Computing -- 1.10 EC Applications in Industry -- 1.10.1 Cloud Service Provider-Based Model -- 1.10.2 Site Facility Edge Service -- 1.10.3 Fixed Operator-Enabled EC Services -- 1.10.4 Mobile Operator-Centric EC Services -- 1.10.5 EC as a Self-Organizing Network -- 1.10.6 Near End Computing Services -- 1.11 Intelligent Edge (IE) and Edge Intelligence (EI) -- 1.11.1 Cost -- 1.11.2 Latency -- 1.11.3 Reliability -- 1.11.4 Privacy -- 1.12 Edge Computing -- 1.13 Edge AI & -- Its Need -- 1.14 Maturation of Neural Networks -- 1.15 Advancements in Computer Infrastructure -- 1.15.1 Use of IoT Devices -- 1.15.2 AI at the Edge: Requirement -- 1.15.3 Benefits of Cloud Computing and Edge Computing -- 1.16 Working of Edge AI -- 1.17 Advantages of Edge AI -- 1.17.1 Intelligence -- 1.17.2 Real-Time -- 1.17.3 Inexpensive -- 1.17.4 Improved Privacy -- 1.17.5 Abundancy -- 1.17.6 Persistency -- 1.17.7 Edge AI Future -- 1.18 Representative Applications of Edge AI -- 1.18.1 Smart Energy Forecasting -- 1.18.2 Predictive Analysis and Maintenance -- 1.18.3 AI-Driven Devices in Healthcare -- 1.18.4 Intelligent Virtual Assistants. , 1.18.5 Cloudlet and Micro-Data Centers -- 1.19 Fog Computing -- 1.20 Mobile Edge Computing -- 1.21 EC Terminologies -- 1.22 End-Edge-Cloud Computing -- 1.23 Hardware for EC -- 1.24 AI Hardware for EC -- 1.24.1 GPU-Enabled Hardware -- 1.24.2 Field Programmable Gate Array (FPGA)-Enabled Hardware [33, 34] -- 1.24.3 Integrated Circuit (ASIC)-Based Hardware -- 1.24.4 Potential of Integrated Commodities for Edge Nodes -- 1.25 EC Frameworks -- 1.25.1 Design Goals -- 1.25.2 End Users -- 1.25.3 Up-Scaling -- 1.25.4 System Characteristics -- 1.25.5 Application Environments -- 1.26 Edge Virtualization -- 1.26.1 Virtualization Strategies -- 1.26.2 Virtualizing Network -- 1.26.3 Network Slicing -- 1.26.4 Value Scenarios (VS) -- 1.26.5 Smart Parks -- 1.27 Video Surveillance -- 1.28 Industrial Internet of Things (IIoT) -- 1.29 Conclusion -- References -- Chapter 2 Securing IoT Services Using Artificial Intelligence in Edge Computing -- 2.1 Introduction -- 2.2 Conception and Depictions -- 2.2.1 IoT Service -- 2.2.2 Edge Computing -- 2.3 Framework of IoT Service With EC -- 2.3.1 Layer of Device -- 2.3.2 Layer of Network -- 2.3.3 Layer of Edge -- 2.3.4 Layer of Cloud -- 2.4 Privacy Maintenance With AI for Edge-Enabled IoT Services -- 2.4.1 Traditional Encryption Methods -- 2.4.1.1 Anonymization -- 2.4.1.2 Cryptographic Method -- 2.4.1.3 Data Obfuscation -- 2.4.2 AI-Based Privacy-Preserving Methods in ENs -- 2.4.2.1 CNN-Based Privacy Preservation -- 2.4.2.2 Privacy Preservation Using DNNs -- 2.5 Edge-Enabled IoT Services With AI and Blockchain -- 2.5.1 Blockchain for IoT Services' Security -- 2.5.1.1 Authentication Management and Access Control -- 2.5.1.2 Reliability and Confidentiality of Data -- 2.5.2 Blockchain for Edge-Enabled IoT Data Sharing -- 2.5.3 Blockchain for Edge-Enabled IoT Services' Efficiency -- 2.6 Challenges and Issues. , 2.6.1 Schemes Based On ML Security -- 2.6.2 Adopt ML in Blockchain Technology -- 2.7 Conclusions -- References -- Chapter 3 Computational-Based Edge AI Services and Challenges -- 3.1 Introduction -- 3.2 Background -- 3.3 Edge AI Services -- 3.3.1 Edge AI Services in Healthcare -- 3.3.2 Edge AI in Retail Industry -- 3.3.3 Role of Edge AI in Manufacturing Industry -- 3.3.4 Role of Edge AI in Transportation and Traffic Management -- 3.4 Edge Computing and AI Algorithms -- 3.4.1 Traditional Machine Learning -- 3.4.2 Deep Learning Algorithms -- 3.4.3 Reinforcement and Deep Reinforcement Learning -- 3.4.4 Evolutionary Algorithms -- 3.5 Challenges in Implementing Edge AI -- 3.6 Conclusion -- References -- Part II Computational Intelligence: Edge AI Security and Privacy -- Chapter 4 Security and Privacy in Edge AI: Challenges and Concerns -- 4.1 Introduction -- 4.1.1 IoT Service -- 4.1.2 IoT Architecture -- 4.1.2.1 Components of IoT Architecture -- 4.1.2.2 Layers of IoT Architecture -- 4.1.2.3 IoT Services -- 4.2 Edge Computing (EC) -- 4.3 EC in Consonance With IoT Devices -- 4.4 Edge AI -- 4.4.1 Definition -- 4.4.2 Traditional Intelligence Vs. Edge Intelligence -- 4.4.3 Need of Edge AI -- 4.4.4 Reasons for Deploying AI at the Edge -- 4.4.5 Pros of Edge AI -- 4.4.6 Working of Edge AI Technology -- 4.5 Edge AI Compared to Edge Computing -- 4.6 Security and Privacy Concerns for Edge AI -- 4.6.1 AI and Edge Computing Security -- 4.6.2 Integration of Edge Computing With AI -- 4.6.3 Security Risks of Edge Computing -- 4.6.3.1 Security in Edge Computing -- 4.6.3.2 Advantages of Security in Edge Computing -- 4.6.3.3 Security Strategies for Edge Computing -- 4.6.3.4 Edge Security Best Practices -- 4.6.3.5 Edge Security Vendors and Products -- 4.7 IoT Service Architecture With Edge Computing -- 4.7.1 Device Layer -- 4.7.2 Network Layer -- 4.7.3 Edge Layer. , 4.7.4 Cloud Layer -- 4.8 AI-Assisted Privacy Preservation for Edge-Enabled IoT Services -- 4.8.1 Traditional Encryption Methods -- 4.8.1.1 Anonymization -- 4.8.1.2 Cryptographic Method -- 4.8.1.3 Data Obfuscation -- 4.8.2 ENs With Lightweight AI Privacy-Preserving Methods -- 4.8.2.1 Role of CNNs in Privacy Preservation -- 4.8.2.2 Role of DNNs in Privacy Preservation -- 4.9 Edge-Enabled IoT Services By AI-Powered Blockchain -- 4.9.1 Role of Blockchain for Maintaining the Security of IoT Services -- 4.9.1.1 Access Control and Authentication Management -- 4.9.1.2 Confidentiality and Reliability of Data -- 4.9.2 Blockchain's Role in Edge-Enabled IoT Data Sharing -- 4.9.3 Enhancing Efficiency of Edge-Enabled IoT Services With Blockchain -- 4.10 Challenges and Concerns -- 4.10.1 Security Schemes Based On ML -- 4.10.1.1 High Cost of Communication and Computation -- 4.10.1.2 Security Techniques for Backup -- 4.10.2 Integration of ML and Blockchain Technology -- 4.11 Conclusion -- References -- Chapter 5 A Study of an Edge Computing-Enabled Metaverse Ecosystem -- 5.1 Introduction -- 5.1.1 Metaverse -- 5.1.2 Edge Computing -- 5.1.3 Edge Computing and Metaverse -- 5.1.3 Metaverse and Traditional Cloud-Based Platform -- 5.1.4 Edge Computing in the Metaverse -- 5.1.5 Use of Edge Computing By Prominent Leaders in Gaming Market -- 5.2 Relevance -- 5.3 Architectural Framework of an Edge Computing-Enabled -- 5.4 Edge Computing Case Studies in the Metaverse -- 5.5 Challenges for Edge Computing-Enabled Metaverse -- 5.5.1 Synchronization Challenges -- 5.5.2 Load Balancing -- 5.5.3 Network Complexities -- 5.5.4 Data Privacy and Security -- 5.5.5 Interoperability -- 5.5.6 Resource Constraints -- 5.5.7 Scalability -- 5.6 Conclusion -- References -- Chapter 6 Sustainable Communication-Efficient Edge AI: Algorithms and Systems -- 6.1 Introduction -- 6.1.1 Edge Devices. , 6.1.2 Cloud Computing -- 6.1.3 Challenges to Cloud Computing -- 6.1.4 Challenges Before Cloud Computing for Building Edge Computing -- 6.1.5 Edge Computing -- 6.1.6 Artificial Intelligence -- 6.1.7 Edge Computing With AI -- 6.1.8 Edge AI -- 6.2.1 Need of Edge AI -- 6.2.2 Advantages of Edge AI -- 6.2.3 How Does Edge AI Technology Work? -- 6.2.4 Edge AI Architecture -- 6.3 Communication-Efficient Edge AI: Algorithms and Systems -- 6.3.1 Communications-Efficient Algorithms for Edge AI -- 6.3.1.1 Federated Learning -- 6.3.1.2 Centralized Federated Learning -- 6.3.1.3 Centralized Federated Learning Design -- 6.4 Centralized Federated Learning Pseudo Code -- 6.4.1 Decentralized Federated Learning -- 6.4.2 Heterogeneous Dederated Learning -- 6.4.3 Quantization -- 6.4.4 Pruning -- 6.4.4.1 Design of Pruning -- 6.4.4.2 Pruning Techniques -- 6.4.4.5 Edge Intelligence Network -- 6.4.4.5 Edge-To-Edge Communication -- References -- Part III Computational Intelligence: Edge Computing and AI Applications -- Chapter 7 Machine Learning-Based Hybrid Technique for Securing Edge Computing -- 7.1 Introduction -- 7.2 Literature Review -- 7.2.1 Static Analysis Based On Malware Detection -- 7.2.2 Dynamic Analysis Based On Malware Detection -- 7.2.3 Hybrid Malware Analysis Techniques -- 7.3 Proposed Hybrid Malware Analysis -- 7.3.1 HybriDroid Architecture -- 7.3.2 Classifier Training for HybriDroid and CHybriDroid -- 7.4 Experimental Results -- 7.4.1 Data Set -- 7.4.2 Feature Selection -- 7.4.3 Feature Ranking -- 7.4.4 Result Discussion -- 7.4.5 Prediction Model Overhead -- 7.4.6 Analysis -- 7.5 Conclusion and Future Work -- References -- Chapter 8 A Study of Secure Deployment of Mobile Services in Edge Computing -- 8.1 Introduction -- 8.1.1 MEC Service Deployment -- 8.1.2 Computation Offloading -- 8.1.3 Data Placement -- 8.2 Basic Concepts and Definitions. , 8.2.1 Service Deployment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...