GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Date/Time of event; DEPTH, water; Event label; File name; File size; LATITUDE; Line; LONGITUDE; OBH; OBH 79; OBH 80; OBH 81; OBH 82; OBH 83; OBH 85; OBH 86; OBS; OBS 37; OBS 38; OBS 39; OBS 40; OBS 41; OBS 42; OBS 43; OBS 45; OBS 46; OBS 47; OBS 48; OBS 51; OBS 52; OBS 53; OBS 54; OBS 73; OBS 74; OBS 75; OBS 76; OBS 78; Ocean bottom hydrophone; Ocean bottom seismometer; Optional event label; POS453; POS453_723-3; POS453_724-1; POS453_725-1; POS453_726-1; POS453_728-1; POS453_729-1; POS453_730-1; POS453_731-1; POS453_740-1; POS453_741-1; POS453_742-1; POS453_743-1; POS453_746-1; POS453_747-1; POS453_748-1; POS453_749-1; POS453_751-1; POS453_752-1; POS453_753-1; POS453_754-1; POS453_782-1; POS453_783-1; POS453_785-1; POS453_786-1; POS453_787-1; POS453_788-1; POS453_789-1; Poseidon; Uniform resource locator/link to sgy data file  (1)
  • episodic venting  (1)
Document type
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2024-01-12
    Description: The Formosa Ridge cold seep is among the first documented active seeps on the northern South China Sea passive margin slope. Although this system has been the focus of scientific studies for decades, the geological factors controlling gas release are not well understood due to a lack of constraints of the subsurface structure and seepage history. Here, we use high‐resolution 3D seismic data to image stratigraphic and structural relationships associated with fluid expulsion, which provide spatio‐temporal constraints on the gas hydrate system at depth and methane seepage at modern and paleo seafloors. Gas has accumulated beneath the base of gas hydrate stability to a critical thickness, causing hydraulic fracturing, propagation of a vertical gas conduit, and morphological features (mounds) at paleo‐seafloor horizons. These mounds record multiple distinct gas migration episodes between 300,000 and 127,000 years ago, separated by periods of dormancy. Episodic seepage still seems to occur at the present day, as evidenced by two separate fronts of ascending gas imaged within the conduit. We propose that episodic seepage is associated with enhanced seafloor sedimentation. The increasing overburden leads to an increase in effective horizontal stress that exceeds the gas pressure at the top of the gas reservoir. As a result, the conduit closes off until the gas reservoir is replenished to a new (greater) critical thickness to reopen hydraulic fractures. Our results provide intricate detail of long‐term methane flux through sub‐seabed seep systems, which is important for assessing its impact on seafloor and ocean biogeochemistry.
    Description: Plain Language Summary: Gas hydrates are ice‐like compounds that form in marine sediments. They can reduce the permeability of the sediments by clogging up the pore spaces, and influence how methane gas flows through sediments and then seeps out of the seafloor. Seepage of methane into the water column plays an important role in seafloor biology and ocean chemistry. In this study, we use 3D seismic imaging to investigate the subseafloor sediments of a ridge in the South China Sea where gas is currently seeping into the ocean. Our data show, in high detail, how gas migrates upward through the sediments due to the buoyancy of gas. Our data also reveal mound structures at certain depths beneath the seafloor. We interpret that these mounds represent distinct phases in the geological past where gas was seeping out of the seafloor. This indicates that gas seepage at this ridge has switched on and off (episodically) throughout geological time. We speculate that the episodic seepage is associated with rapid seafloor sedimentation, which changes pressure conditions beneath the seafloor. Our work improves the understanding of how gas seepage processes can change on geological timescales.
    Description: Key Points: Gas has accumulated beneath the base of gas hydrate stability, causing vertical gas conduit formation and seabed mounds. Mounds imaged within the conduit record episodic seepage between 300 and 127 kyrs ago. Quiescence may be associated with enhanced seafloor sedimentation that increases effective stress at the top of the gas reservoir.
    Description: MOST
    Description: ESAS
    Description: TEC
    Description: https://doi.pangaea.de/10.1594/PANGAEA.913192
    Keywords: ddc:553.1 ; gas hydrate ; gas conduit ; hydraulic fracturing ; episodic venting ; sedimentary processes ; offshore Taiwan
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Davy, Richard G; Minshull, Tim A; Bayrakci, Gaye; Bull, Jonathan M; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy J; Sawyer, Dale S; Zelt, CA (2016): Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic. Journal of Geophysical Research: Solid Earth, 121(5), 3177-3199, https://doi.org/10.1002/2016JB012825
    Publication Date: 2024-02-16
    Description: Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent‐ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide‐angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0–7.0 km s−1 velocity contours, corresponding to peridotite serpentinization of 60–30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8–3.5 km, with an average velocity gradient of 1.0 s−1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth.
    Keywords: Date/Time of event; DEPTH, water; Event label; File name; File size; LATITUDE; Line; LONGITUDE; OBH; OBH 79; OBH 80; OBH 81; OBH 82; OBH 83; OBH 85; OBH 86; OBS; OBS 37; OBS 38; OBS 39; OBS 40; OBS 41; OBS 42; OBS 43; OBS 45; OBS 46; OBS 47; OBS 48; OBS 51; OBS 52; OBS 53; OBS 54; OBS 73; OBS 74; OBS 75; OBS 76; OBS 78; Ocean bottom hydrophone; Ocean bottom seismometer; Optional event label; POS453; POS453_723-3; POS453_724-1; POS453_725-1; POS453_726-1; POS453_728-1; POS453_729-1; POS453_730-1; POS453_731-1; POS453_740-1; POS453_741-1; POS453_742-1; POS453_743-1; POS453_746-1; POS453_747-1; POS453_748-1; POS453_749-1; POS453_751-1; POS453_752-1; POS453_753-1; POS453_754-1; POS453_782-1; POS453_783-1; POS453_785-1; POS453_786-1; POS453_787-1; POS453_788-1; POS453_789-1; Poseidon; Uniform resource locator/link to sgy data file
    Type: Dataset
    Format: text/tab-separated-values, 212 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...