GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In this study the interplay between Tropical Cyclones (TCs) and the Northern hemispheric Ocean Heat Transport (OHT) is investigated. In particular, results from a numerical simulation of the 20th and 21st Century climate, following the Intergovernmental Panel for Climate Change (IPCC) 20C3M and A1B scenario protocols respectively have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere-ocean-sea-ice coupled general circulation model - CGCM (CMCC-MED, Gualdi et al. 2010, Scoccimarro et al. 2010) with relatively high-resolution (T159) in the atmosphere. The model is an evolution of the INGV-SXG (Gualdi et al. 2008, Bellucci et al. 2008) and the ECHAM-OPA-LIM (Fogli et al. 2009, Vichi et al. 2010) The simulated TCs exhibit realistic structure, geographical distribution (Fig.2) and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model (Fig.3). TC activity is shown to significantly affect the poleward OHT out of the tropics, and the heat transport into the deep tropics (Fig.4). This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface (Fig.7). TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 simulated period as well as the effect of the TCs on the meridional OHT.
    Description: Unpublished
    Description: S.Francisco. USA
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; Ocean Heat Transoport ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Within the CIRCE (Climate Change and Impact Research: The Mediterranean Environment) EU Project, substantial efforts were devoted to enhance the representation of the oceanic system in the Mediterranean region. This was achieved by developing coupled general circulation models with ocean components which either explicitly resolve, or simply permit, mesoscale circulation features. The inclusion of the eddy variability tail in the spectrum of the processes resolved by the modelled system represents a particularly relevant step forward with respect to the previous CMIP3 generation of climate models , as these were systematically based on coarse resolution ocean components, leading in turn to an extremely rough representation of the Mediterranean Sea sub-system. In this study the role of mesoscale oceanic features on the air-sea interactions over the Mediterranean region was analysed, in the context of one of the CIRCE ensemble of climate models. To this aim, two different simulations of the 20th Century climate, performed with two distinct configurations of the CMCC coupled general circulation model featuring radically different horizontal resolutions in the Mediterranean Sea domain, were compared. This comparison highlights the implications deriving from the inclusion of energetic ocean mesoscale structures in the variability spectrum of the coupled ocean-atmosphere system and points to the need for high-resolution ocean components in the development of next generation climate model.
    Description: Unpublished
    Description: Wien, Austria
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: mediterranean Sea ; eddies ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this work the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model (OAGCM), under the framework of the COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) EU Project, are investigated. The decadal predictions are performed in both retrospective (hindcast) and forecast mode. Specifically, the full set of prediction experiments consists of 3-members ensembles of 30-years simulations, start- ing at 5-years intervals from 1960 to 2005, using CMIP5 historical radiative forcing conditions (including green- house gases, aerosols and solar irradiance variability) for the 1960-2005 period, followed by RCP4.5 scenario settings for the 2005-2035 period. The ocean initial state is provided by ocean syntheses differing by assimilation methodologies and assimilated data, but obtained with the same ocean model. The use of alternative ocean anal- yses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system is analysed at both global and regional scale as well as the processes underlying the enhanced predictability exhibited over specific regions (most notably, in the North Atlantic)
    Description: Unpublished
    Description: Wien, Austria
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: decadal predictions ; ocean initialization ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...