GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-515X
    Keywords: adsorption ; bacterial dissimilatory sulfate reduction ; dry deposition ; forested catchment ; Lake Gårdsjön ; isotopes ; oxidation of sulfur ; sulfate ; sulfur ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A small catchment on the Swedish West Coast has been studied over four years to determine S dynamics by using S isotope ratios. A Norway spruce dominated forest covers the catchment, and small peat areas occur in the lower parts of the catchment. The runoff $$\delta ^{34} S_{SO_4 } $$ values varied both during the year, and from year to year. Over the period from February 1990 to December 1993, the $$\delta ^{34} S_{SO_4 } $$ values ranged from — 1%. to +11%. Over the same period, the throughfall $$\delta ^{34} S_{SO_4 } $$ values ranged from +1%. to +15%. There was no correlation (r 2= 0.01; Pr(F)=0.57) between $$\delta ^{34} S_{SO_4 } $$ values in throughfall and runoff. Since the only input of S to the catchment is atmospheric deposition, the long-term runoff S mass flux is controlled by the deposition. Therefore, processes in the catchment are responsible for the variation in the runoff $$\delta ^{34} S_{SO_4 } $$ values. During periods with $$\delta ^{34} S_{SO_4 } $$ enriched runoff, bacterial dissimilatory SO 4 2− reduction occurs in the catchment. After very dry periods, oxidation of this reduced S, which is32S-enriched, can be traced in runoff. Previous studies of the catchment have not been able to distinguish between: 1) oxidation of reduced S and dry deposition, and 2) reduction and adsorption. From the current study, it can be concluded that adsorption and dry deposition cannot cause the observed variation in runoff $$\delta ^{34} S_{SO_4 } $$ .
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: atmospheric deposition ; mining area ; SO2 emission ; soil ; sulfur isotopes ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Mining activities for almost thousand years have caused large S emissions in the Falun area, central Sweden. Since the beginning of the 20th century, the S deposition has decreased considerably. The soil S concentrations and S isotope compositions were analyzed for ΣS and adsorbed SO42- for three soil profiles close to the mining area in order to identify the soil S sources. The δ34S values were found to be different for ΣS and adsorbed SO42- and ranged from –3.7‰ to +2.6‰. In the B-horizon, the observed ΣS δ34S values (and hence calculated δ34S values for organic S) were mostly lower than those of the adsorbed SO42-. In the O-horizon, ΣS showed similar δ34S values as the adsorbed SO42- in the mineral soil. The adsorbed SO42- showed nearly constant δ34S values with depth. The δ34S values in the soils are interpreted to reflect a mixture of historical and modern deposition due to soil S circulation with no or negligible fractionation. The lower δ34S values of organic S in the B-horizon suggests preservation of acid deposition originating from mining activities back in time. The adsorbed SO42- in the mineral soil and the organic S in the O-horizon reflect a response to a new δ34S composition in the atmosphere due to fossil fuel burning during the 20th century.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...