GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 85 (1996), S. 669-682 
    ISSN: 0016-7835
    Keywords: Key words Turbidites ; Submarine fan ; Sequence ; stratigraphy ; Fore-arc basin ; Eocene ; Turkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The Haymana basin in central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore-arc accretionary wedge. A sequential model is proposed for the 1-km-thick Lutetian Yamak turbidite complex (YTC) which is the youngest paleotectonic unit of the basin. The YTC represents a prograding submarine fan subdivided into three depositional sequences (DS), each several hundred meters thick. Each depositional sequence consists of a turbidite system (TS), with sandstone and conglomeratic sandstone beds alternating with mudstones, overlain by basin plain mudstones. In each turbidite system, the sandstone and mudstone sequential organization allows the distinction of smaller subdivisions, namely, basic sequences (BS) and basic units (BU), with each basic sequence being composed of several basic units. This subdivision, associated with a two-dimensional geometric reconstruction of the YTC, leads to a better understanding of the evolution in time and space of the submarine fan system. Lower to middle fan depositional lobes, and upper fan and slope channels, are represented. As a whole, the YTC progressed from a sand-poor to a sand-rich system. Depositional sequences (DS) of the YTC may correspond to third-order sea-level cycles of tectonic origin. Accordingly, fourth- and fifth-order cycles might be proposed for the BS and BU, respectively. However, partly because of the limited extent of exposures, the allocyclic origin of these finer subdivisions remains problematic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 669-682 
    ISSN: 1437-3262
    Keywords: Turbidites ; Submarine fan ; Sequence stratigraphy ; Fore-arc basin ; Eocene ; Turkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Haymana basin in central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore-arc accretionary wedge. A sequential model is proposed for the 1-km-thick Lutetian Yamak turbidite complex (YTC) which is the youngest paleotectonic unit of the basin. The YTC represents a prograding submarine fan subdivided into three depositional sequences (DS), each several hundred meters thick. Each depositional sequence consists of a turbidite system (TS), with sandstone and conglomeratic sandstone beds alternating with mudstones, overlain by basin plain mudstones. In each turbidite system, the sandstone and mudstone sequential organization allows the distinction of smaller subdivisions, namely, basic sequences (BS) and basic units (BU), with each basic sequence being composed of several basic units. This subdivision, associated with a two-dimensional geometric reconstruction of the YTC, leads to a better understanding of the evolution in time and space of the submarine fan system. Lower to middle fan depositional lobes, and upper fan and slope channels, are represented. As a whole, the YTC progressed from a sand-poor to a sand-rich system. Depositional sequences (DS) of the YTC may correspond to third-order sea-level cycles of tectonic origin. Accordingly, fourth- and fifth-order cycles might be proposed for the BS and BU, respectively. However, partly because of the limited extent of exposures, the allocyclic origin of these finer subdivisions remains problematic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...