GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Testis ; Spermatogenesis ; FSH ; Testosterone ; Rat (Sprague-Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Adult rats were hypophysectomized and treated with ethane dimethanesulphonate (EDS) selectively to eliminate the Leydig cells in the testis. By removing the source of endogenous gonadotrophins and androgens, the subsequent effects on the seminiferous epithelium were studied after 20 days of treatment with vehicle, or FSH (2x50 μg/day) or a low dose of testosterone (0.6 mg testosterone esters every 3rd day) alone or in combination. Compared to vehicle-treated hypophysectomized rats with Leydig cells, testis weight in saline-treated hypophysectomized rats treated with EDS declined by 50%, spermatogenesis was disrupted severely and only 18% of the tubules contained spermatids, these being confined to stages I–VI of the spermatogenic cycle. Treatment with either FSH or testosterone esters alone significantly (P〈0.01) increased testis weight compared to vehicle-treated hypophysectomized rats treated with EDS and 40% of tubules contained spermatids either at stages I–VI after FSH, or at all stages I–XIV after testosterone treatment. Treatment with FSH and testosterone esters together maintained testis weights approximately 20% above vehicle-treated hypophysectomized controls; over 70% of the seminiferous tubules contained spermatids and there was a marked stimulation of spermatogenesis at all stages of the spermatogenic cycle. The results suggest, that in the absence of the pituitary gland and the Leydig cells, FSH alone partially supports spermatogenesis up to the development of round spermatids whereas testosterone is capable of maintaining spermatid development at all 14 stages of the cycle. When FSH and testosterone were administered in combination, the effects upon spermatogenesis were far greater than the response expected if their individual effects were simply additive. It is therefore concluded that FSH may play a role in normal spermatogenesis and that this role is essentially that of augmenting the response of the testis to testosterone. The biochemical mechanisms via which this might occur are discussed and hypophysectomized rats treated with EDS used in the present studies should provide a useful approach for their identification.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Spermatogenesis ; Cyclic protein 2 ; Transition protein 2 ; Cytochrome c oxidase ; Sertoli cell ; Spermatids ; Pachytene spermatocytes ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In an attempt to identify key changes involved in normal spermatogenesis we have developed methods to enable the study of gene expression by the various subpopulations of testicular cells by use of in-situ hybridisation histochemistry. The use of digoxigenin-labelled ribonucleotide and oligonucleotide probes on testicular tissue perfusion-fixed with Bouin's fixative and embedded in paraffin, polystyrene or methacrylate, has been used to accurately localise three transcripts to three different cell types (Sertoli cells, pachytene spermatocytes, and step 7–12 spermatids) within the seminiferous tubule. The ability to produce semi-thin sections of polystyrene- or methacrylate-embedded tissue and successfully to apply digoxigenin-labelled ribonucleotide or oligonucleotide probes resulted in far greater resolution and unequivocal localisation of mRNA in testicular cells than was previously possible by use of thicker paraffin or frozen sections hybridised with 35S-labelled riboprobes. A comparison of the different embedding media versus digoxigenin-labelled oligonucleotide or ribonucleotide probes is made and we demonstrate the relative sensitivities and merits of each combination.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0003-276X
    Keywords: Spermatogenesis ; Testosterone ; Germ cell degeneration ; Testis ; Rat ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Rapid and complete withdrawal of intratesticular testosterone was achieved via the destruction of all Leydig cells with the specific Leydig cell cytotoxin ethane dimethanesulphonate (EDS). Restoration of testosterone levels was accomplished by administration of a single dose (25 mg) of testosterone esters (T) known to reverse the antispermatogenic effects of androgen withdrawal. Quantitation of the degenerating germ cells in cross sections of seminiferous tubules (ST) at stages IV-V, VII, IX, and X-XI of the spermatogenic cycle was used as a sensitive biological index of the effects of testosterone withdrawal and restoration upon the function of the Sertoli cells. Compared to control testicular tissues, the mean numbers of pyknotic germ cells per ST cross section at stages VII, IX and X-XI increased significantly (P 〈 0.01-0.001) between 4 to 8 days post-EDS treatment, but only in stage VII tubules was this trend reversed significantly (P 〈 0.005) within 2 days by T supplementation. In EDS-treated rats, stages VII, VIII, IX, and X-XI also exhibited significant (P 〈 0.05-0.001) increases (compared to controls) in the volumetric proportions by which intraepithelial vacuoles appeared within the seminiferous tubules. Again, in EDS+T supplemented rats, the appearance of vacuoles was significantly (P 〈 0.001) suppressed in stage VII and VIII. In contrast to tubules at stages VII-XI, those at stages IV-V were completely unaffected by testosterone withdrawal or replacement. The results show that at selected time intervals after EDS treatment, testosterone supplementation is capable of preventing/reversing these morphological changes within 2 days in stage VII tubules. It is suggested that the induction and subsequent prevention of seminiferous epithelial damage will serve as an important in vivo and in vitro approach for studies on the androgen-mediated changes in Sertoli cell biology during phases of impairment and recovery of their function. Manipulation of adult Sertoli cell function as provided by our model should permit identification of androgen-regulated gene products together with an understanding of their role(s) in normal and abnormal spermatogenesis. © 1993 Wiley-Liss, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1040-452X
    Keywords: Spermatogenesis ; Digoxigenin ; TP2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The present study has used methoxyacetic acid (MAA)-induced depletion of specific germ cell types in the rat and in situ hybridization with nonradioactive riboprobes to determine the stages of the spermatogenic cycle at which there is expression of the mRNA for the basic chromosomal protein transition protein 2 (TP2). On Northern blots, an abundant mRNA was detectable in samples from control adult rats, but the amount of message was markedly reduced when RNA was extracted from the testes of rats treated 14 and 21 days previously with methoxyacetic acid. These testes were depleted specifically of step 7-12 spermatids, suggesting that these cells contain TP2 mRNA. When tissue sections were subjected to in situ hybridization, the TP2 mRNA was localized at the cellular and subcellular levels. Messenger RNA for TP2 was first detectable in spermatids at step 7. In these spermatids, at high magnification, in addition to some positive reaction in the cytoplasm, intense staining was located to a perinuclear structure consistent with localization of mRNA within the chromatoid body. The amount of TP2 mRNA in the cytoplasm increased as remodelling of the early spermatid nucleus progressed and was highest in step 10 and 11 spermatids at stages X and XI. Thereafter, the mRNA decreased until it was undetectable in step 14 spermatids at stage XIV. The localization of TP2 mRNA to the chromatoid body of step 7 spermatids would be consistent with this organelle being a storage site for long-lived mRNAs utilized later in spermiogenesis. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...