GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Atmosphere-ocean interaction  (1)
  • Seascapes  (1)
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 2622–2651, doi:10.1175/JCLI-D-11-00301.1.
    Beschreibung: This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.
    Beschreibung: M. Alexander, A. Capotondi, and J. Scott’s participation was supported by a grant from the NSF Climate and Large-scale Dynamics Program. Y.-O. Kwon gratefully acknowledges support from a WHOI Heyman fellowship and a grant from the NSF Climate and Largescale Dynamics Program. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy.
    Beschreibung: 2012-10-15
    Schlagwort(e): Atmosphere-ocean interaction ; El Nino ; ENSO ; La Nina ; Pacific decadal oscillation ; Climate models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Capotondi, A., Jacox, M., Bowler, C., Kavanaugh, M., Lehodey, P., Barrie, D., Brodie, S., Chaffron, S., Cheng, W., Dias, D. F., Eveillard, D., Guidi, L., Iudicone, D., Lovenduski, N. S., Nye, J. A., Ortiz, I., Pirhalla, D., Buil, M. P., Saba, V., Sheridan, S., Siedlecki, S., Subramanian, A., de Vargas, C., Di Lorenzo, E., Doney, S. C., Hermann, A. J., Joyce, T., Merrifield, M., Miller, A. J., Not, F., & Pesant, S. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Frontiers in Marine Science, 6, (2019): 623, doi:10.3389/fmars.2019.00623.
    Beschreibung: Many coastal areas host rich marine ecosystems and are also centers of economic activities, including fishing, shipping and recreation. Due to the socioeconomic and ecological importance of these areas, predicting relevant indicators of the ecosystem state on sub-seasonal to interannual timescales is gaining increasing attention. Depending on the application, forecasts may be sought for variables and indicators spanning physics (e.g., sea level, temperature, currents), chemistry (e.g., nutrients, oxygen, pH), and biology (from viruses to top predators). Many components of the marine ecosystem are known to be influenced by leading modes of climate variability, which provide a physical basis for predictability. However, prediction capabilities remain limited by the lack of a clear understanding of the physical and biological processes involved, as well as by insufficient observations for forecast initialization and verification. The situation is further complicated by the influence of climate change on ocean conditions along coastal areas, including sea level rise, increased stratification, and shoaling of oxygen minimum zones. Observations are thus vital to all aspects of marine forecasting: statistical and/or dynamical model development, forecast initialization, and forecast validation, each of which has different observational requirements, which may be also specific to the study region. Here, we use examples from United States (U.S.) coastal applications to identify and describe the key requirements for an observational network that is needed to facilitate improved process understanding, as well as for sustaining operational ecosystem forecasting. We also describe new holistic observational approaches, e.g., approaches based on acoustics, inspired by Tara Oceans or by landscape ecology, which have the potential to support and expand ecosystem modeling and forecasting activities by bridging global and local observations.
    Beschreibung: This study was supported by the NOAA’s Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) Program through grants NA17OAR4310106, NA17OAR4310104, NA17OAR4310108, NA17OAR4310109, NA17OAR4310110, NA17OAR4310111, NA17OAR4310112, and NA17OAR4310113. This manuscript is a product of the NOAA/MAPP Marine Prediction Task Force. The Tara Oceans consortium acknowledges support from the CNRS Research Federation FR2022 Global Ocean Systems Ecology and Evolution, and OCEANOMICS (grant agreement ‘Investissement d’Avenir’ ANR-11-BTBR-0008). This is article number 95 of the Tara Oceans consortium. MK and SD acknowledge support from NASA grant NNX14AP62A “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)” funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the NOAA Integrated Ocean Observing System (IOOS) Program Office. WC, IO, and AH acknowledge partial support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2019-1029. This study received support from the European H2020 International Cooperation project MESOPP (Mesopelagic Southern Ocean Prey and Predators), grant agreement no. 692173.
    Schlagwort(e): Marine ecosystems ; Modeling and forecasting ; Seascapes ; Genetics ; Acoustics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...