GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Keywords: atmospheric deposition ; mining area ; SO2 emission ; soil ; sulfur isotopes ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Mining activities for almost thousand years have caused large S emissions in the Falun area, central Sweden. Since the beginning of the 20th century, the S deposition has decreased considerably. The soil S concentrations and S isotope compositions were analyzed for ΣS and adsorbed SO42- for three soil profiles close to the mining area in order to identify the soil S sources. The δ34S values were found to be different for ΣS and adsorbed SO42- and ranged from –3.7‰ to +2.6‰. In the B-horizon, the observed ΣS δ34S values (and hence calculated δ34S values for organic S) were mostly lower than those of the adsorbed SO42-. In the O-horizon, ΣS showed similar δ34S values as the adsorbed SO42- in the mineral soil. The adsorbed SO42- showed nearly constant δ34S values with depth. The δ34S values in the soils are interpreted to reflect a mixture of historical and modern deposition due to soil S circulation with no or negligible fractionation. The lower δ34S values of organic S in the B-horizon suggests preservation of acid deposition originating from mining activities back in time. The adsorbed SO42- in the mineral soil and the organic S in the O-horizon reflect a response to a new δ34S composition in the atmosphere due to fossil fuel burning during the 20th century.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...