GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Autoregulation ; LacZ fusion protein ; Northern hybridization ; Regulatory circuit ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mode of expression was investigated for two positive regulatory genes PHO2 and PHO4, whose products are indispensable for the transcriptional control of the structural genes of repressible acid phosphatase and the inorganic phosphate (Pi) transport system in Saccharomyces cerevisiae. Northern analysis of poly(A)+ RNA of the wild-type and the pho regulatory mutants with PHO4 DNA as hybridization probe and expressional analysis of a pho4′-'lacZ fused gene on a YEp plasmid revealed that PHO4 is expressed at a low level, constitutively, and independently of the PHO regulatory system and Pi in the medium. Similar analyses with PHO2 DNA indicated that PHO2 is expressed at an even lower level than PHO4, and is repressed by Pi and by the active PHO2 product, possibly at the translational level, while retaining a substantial level of basal activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 217 (1989), S. 40-46 
    ISSN: 1617-4623
    Keywords: Gene dosage ; Gene expression ; Regulatory circuit ; Signal transmission ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Expression of the repressible acid phosphatase (rAPase) gene, PHO5, of Saccharomyces cerevisiae is repressed by a certain level of inorganic phosphate (Pi) in the medium and is derepressed when the Pi concentration is lowered. The Pi signals are conveyed to PHO5 by a regulatory system consisting of proteins coded for by the PHO2, PHO4, PHO80 and PHO81 genes. We have found that the transcription of PHO81 is regulated by Pi through the PHO regulatory system. Increasing the dosage of PHO4 and PHO81 by ligating each gene to YEP13 gives rise to, respectively, considerable and weak synthesis of rAPase by cultivation of the transformants in high-Pi medium; but in low-Pi medium, increased dosage of PHO4 stimulates the rAPase synthesis significantly, whereas PHO81 has no effect. Increased dosage of PHO2 stimulates rAPase synthesis considerably in low-Pi but not in high-Pi. A coordinate increase of PHO80 cancels the dosage effect of PHO4, but not that of PHO81. Coordinate increases of PHO80 and PHO2 give rise to the same phenotype as an increased dosage of PHO80 alone. The level of the PHO4 protein was found to be the limiting factor of the rAPase synthesis and the copy number of the PHO5 gene not to be. These facts accord with the idea that the PHO80 protein transmits the Pi signals to the PHO5 gene via the PHO4 protein, whereas the PHO2 protein does not have a direct function in the signal transmission.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...