GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 27 (1998), S. 803-815 
    ISSN: 1572-8927
    Keywords: Rare earth ; complexation ; carbonate ; ICP–MS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Carbonate stability constants for yttrium and all rare earth elements have been determined at 25°C and 0.70 molal ionic strength by solvent exchange and inductively coupled plasma–mass spectrometry (ICP–MS). Measured stability constants for the formation of $${\text{MCO}}_3^ +$$ and $${\text{M}}\left( {{\text{CO}}_{\text{3}} } \right)_2^--$$ from M3+ are in good agreement with previous direct measurements, which involved the use of radio-chemical techniques and trivalent ions of Y, Ce, Eu, Gd, Tb, and Yb. Direct ICP–MS measurements of $${\text{MCO}}_3^ +$$ and $${\text{M}}\left( {{\text{CO}}_{\text{3}} } \right)_2^--$$ formation constants are also in general agreement with modeled stability constants for the metals La, Pr, Nd, Sm, Dy, Ho, Er, Tm, and Lu, based on linear-free energy relationship (LFER). The experimental procedures developed in this work can be used for assessing the complexation behavior of other geochemically important ligands such as phosphate, sulfate, and fluoride.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 4 (1998), S. 103-121 
    ISSN: 1573-1421
    Keywords: Rare earth ; Rare earth ; fractionation ; model ; riverine ; oceanic ; estuarine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Fractionation of yttrium (Y) and the rare earth elements (REEs) begins in riverine systems and continues in estuaries and the ocean. Models of yttrium and rare earth (YREE) distributions in seawater must therefore consider the fractionation of these elements in both marine and riverine systems. In this work we develop a coupled riverine/marine fractionation model for dissolved rare earths and yttrium, and apply this model to calculations of marine YREE fractionation for a simple two-box (riverine/marine) geochemical system. Shale-normalized YREE concentrations in seawater can be expressed in terms of fractionation factors (λ ij ) appropriate to riverine environments ( $$\lambda _{ij}^{river}$$ ) and seawater ( $$\lambda _{ij}^{ocean}$$ ): $$\log \frac{{\left( {M_i } \right)_T^{ocean} }}{{\left( Y \right)_T^{ocean} }} = log\;\lambda _{ij}^{ocean} + ((\lambda _{ij}^{river} )^{ - 1} - 1)\;log\frac{{[Y]_T^{river} }}{{[Y^0 ]_T^{river} }}$$ where $$\left( {M_i } \right)_T^{ocean}$$ and $$\left( Y \right)_T^{ocean}$$ are input-normalized total metal concentrations in seawater and $$[Y]_T^{river} /[Y^0 ]_T^{river}$$ is the ratio of total dissolved Y in riverwater before $$([Y^0 ]_T^{river} )$$ and after $$([Y]_T^{river} )$$ commencement of riverine metal scavenging processes. The fractionation factors (λ ij ) are calculated relative to the reference element, yttrium, and reflect a balance between solution and surface complexation of the rare earths and yttrium.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...