GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Particle image velocimetry  (2)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 488 (2013): 171-185, doi:10.3354/meps10382.
    Beschreibung: Investigating settlement responses in the transitory period between planktonic and benthic stages of invertebrates helps shape our understanding of larval dispersal and supply, as well as early adult survival. Turbulence is a physical cue that has been shown to induce sinking and potentially settlement responses in mollusc larvae. In this study, we determined the effect of turbulence on vertical swimming velocity and diving responses in competent eastern oyster larvae Crassostrea virginica. We quantified the behavioural responses of larvae in a moving flow field by measuring and analyzing larval velocities in a relative framework (where local flow is subtracted away, isolating the behavioural component) in contrast to the more common absolute framework (in which behaviour and advection by the flow are conflated). We achieved this separation by simultaneously and separately tracking individuals and measuring the flow field around them using particle image velocimetry in a grid-stirred turbulence tank. Contrary to our expectations, larvae swam upward even in highly turbulent flow, and the dive response became less frequent. These observations suggest that oyster larvae are stronger swimmers than previously expected and provide evidence that turbulence alone may not always be a sufficient cue for settlement out of the water column. Furthermore, at a population level, absolute velocity distributions differed significantly from isolated larval swimming velocities, a result that held over increasing turbulence levels. The absolute velocity distributions indicated a strong downward swimming or sinking response at high turbulence levels, but this observation was in fact due to downwelling mean flows in the tank within the imaging area. Our results suggest that reliable characterization of larval behaviour in turbulent conditions requires the subtraction of local flow at an individual level, imposing the technical constraint of simultaneous flow and behavioural observations.
    Beschreibung: This work was supported by NSF grant OCE-0850419, grants from WHOI Coastal Ocean Institute, discretionary WHOI funds to purchase the infrared laser and high-speed camera, and a WHOI Ocean Life Fellowship to L.S.M.
    Schlagwort(e): Turbulence ; Crassostrea virginica ; Settlement ; Larval behaviour ; Particle image velocimetry
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Experimental Biology 219 (2016): 1303-1310, doi:10.1242/jeb.129502.
    Beschreibung: Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology–flow interactions.
    Beschreibung: This work was supported by the National Science Foundation [OCE-0850419] and the National Oceanic and Atmospheric Administration Sea Grant [NA14OAR4170074]. K.Y.K.C. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Coastal Ocean Institute, the Croucher Foundation and the Royal Swedish Academy of Sciences. K.Y.K.C. is currently funded by the Croucher Foundation. Additional funding was provided to L.S.M. through the WHOI Ocean Life Fellowship and discretionary WHOI funds, and to E.J.A. through the faculty sabbatical program at Grove City College.
    Schlagwort(e): Pluteus ; Behavior ; Hydrodynamics ; Particle image velocimetry
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...