GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05003, doi:10.1029/2009GC002933.
    Description: A log-based volcanic stratigraphy of Ocean Drilling Program Hole 1256D provides a vertical cross-section view of in situ upper crust formed at the East Pacific Rise (EPR) with unprecedented resolution. This stratigraphy model comprises ten electrofacies, principally identified from formation microscanner images. In this study, we build a lava flow stratigraphy model for the extrusive section in Hole 1256D by correlating these electrofacies with observations of flow types from the modern EPR, such as sheet flows and breccias, and pillow lavas and their distribution. The resulting flow stratigraphy model for the Hole 1256D extrusive section represents the first realization of detailed in situ EPR upper oceanic crust construction processes that have been detected only indirectly from remote geophysical data. We correlated the flow stratigraphy model with surface geology observed from the southern EPR (14°S) by Shinkai 6500 dives in order to obtain the relationship between lava flow types and ridge axis-ridge slope morphology. This dive information was also used to give a spatial-time reference frame for modeling lava deposition history in Hole 1256D. In reconstructing the lava deposition history, we interpreted that the origins of the ∼100 m thick intervals with abundant pillow lavas in Hole 1256D are within the axial slope where pillow lavas were observed during the Shinkai 6500 dives and previous EPR surveys. This correlation could constrain the lava deposition history in Hole 1256D crust. Using the lateral scale of ridge axis–ridge slope topography from the Shinkai 6500 observations and assuming the paleospreading rate was constant, 50% of the extrusive rocks in Hole 1256D crust were formed within ∼2000 m of the ridge axis, whereas nearly all of the remaining extrusive section was formed within ∼3000 m of the ridge axis. These results are consistent with the upper crustal construction model previously suggested by seismic studies.
    Description: S.U. was supported by the Center of Deep Earth Exploration (CDEX) for travel fares and by Monbusho grant-in-aid for research 18540472.
    Keywords: Ocean Drilling Program ; Hole 1256D ; Volcanostratigraphy ; East Pacific Rise ; Wireline logging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/jpeg
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q03004, doi:10.1029/2010GC003347.
    Description: Understanding how pelagic sediment has been eroded, transported, and deposited is critical to evaluating pelagic sediment records for paleoceanography. We use digital seismic reflection data from an Integrated Ocean Drilling Program site survey (AMAT03) to investigate pelagic sedimentation across the eastern-central equatorial Pacific, which represents the first comprehensive record published covering the 18–53 Ma eastern equatorial Pacific. Our goals are to quantify (1) basin-hill-scale primary deposition regimes and (2) the extent to which seafloor topography has been subdued by abyssal valley-filling sediments. The eastern Pacific seafloor consists of a series of abyssal hills and basins, with minor late stage faulting in the basement. Ocean crust rarely outcrops at the seafloor away from the rise crest; both hills and basins are sediment covered. The carbonate compensation depth is identified at 4440 m by the appearance of acoustically transparent clay intervals in the seismic data. Overall, we recognized three different sedimentation regimes: depositional (high sedimentation rate), transitional, and minimal sedimentation (low sedimentation rate) regimes. In all areas, the sedimented seafloor mimics the underlying basement topography, although the degree to which topography becomes subdued varies. Depositional regimes result in symmetric sedimentation within basins and subdued topography, whereas minimal sedimentation regimes have more asymmetric distribution of sediments within topographic lows and higher seafloor relief. Regardless of sedimentation regime, enhanced sediment deposition occurs within basins. However, we observe that basin infill is rarely more than twice as thick as sediment cover over abyssal hills. If this variation is due to sediment focusing, the focusing factor in the basins, as measured by 230Th, is no more than a factor of ∼1.3 of the total vertical particulate rain.
    Description: This research is supported by NSF grants OCE‐07253011 and OCE‐0851056 (M. Lyle and M. Tominaga) and NERC grant NE/C508985/2 (N. C. Mitchell).
    Keywords: Equatorial Pacific ; Multichannel seismic reflection ; Ocean Drilling Program
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...