GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean Drilling Program; ODP  (2)
  • Geology, Structural-Arctic regions.  (1)
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Geology, Structural-Arctic regions. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (215 pages)
    Edition: 1st ed.
    ISBN: 9783030468620
    Series Statement: Springer Geology Series
    DDC: 551.809113
    Language: English
    Note: Intro -- Acknowledgements -- Introduction -- Contents -- New Tectonic Map of the Arctic -- 1 History of the Tectonic Map Compilation -- 2 Tectonic Provinces of the Arctic -- References -- Deep Structures of the Circumpolar Arctic -- 1 Gravity and Magnetic Anomaly Maps -- 2 Earth's Crust Velocity Models by Wide-Angle Seismics -- 3 Set of Deep Structure Maps -- 4 Geotransect Across the Circumpolar Arctic -- References -- Arctic Sedimentary Cover Structure and Eastern Arctic Structure Maps -- 1 Sedimentary Cover Structure -- 1.1 Map of Seismic Knowledge -- 1.2 Correlation Chart Showing Stratigraphic Tie of Reflectors -- 1.3 Set of Composite Seismic Profiles Across Major Geological Structures of the Northeastern Arctic -- 2 Structural Maps of the Eastern Arctic -- 2.1 Acoustic Basement Structure Map -- 2.2 Top Cretaceous Structure Map (Reflector pCU) -- 2.3 Eocene Structure Map (Reflector UB) -- References -- Geological and Paleogeographic Map of the Eastern Arctic -- 1 Eastern Arctic Geological Map at Scale 1:5 M -- 2 Eastern Arctic Structural Geological Map -- 3 Map of Tectonic Zoning of the Eastern Arctic Basement -- 4 Paleogeographic Maps of the Eastern Arctic -- 4.1 Late Jurassic Paleogeographic Map (−145 Ma) -- 4.2 Early Cretaceous (Aptian-Albian) Paleogeographic Map (−112 Ma) -- 4.3 Paleogene (Eocene) Paleogeographic Map (−35 Ma) -- 4.4 Neogene (Miocene) Paleogeographic Map (−10 Ma) -- References -- Study of the Arctic Seabed Rocks -- 1 Study of the Arctic Basin Bottom-Rock Material -- 2 Geochemical and Isotope-Geochronological Knowledge of the Eastern Arctic -- 3 Geological Section of the Acoustic Basement of the Alpha-Mendeleev Rise -- References -- Geology of the Eastern Arctic Islands and Continental Fridge of the Arctic Seas -- 1 Severnaya Zemlya Archipelago -- 2 Taimyr Peninsula -- 3 New Siberian Islands Archipelago -- 4 Wrangel Island. , 5 Continental Eastern Arctic -- References -- Correlation of Chukotka, Wrangel Island and the Mendeleev Rise -- 1 Geologic Framework -- 2 Petrographic Data -- 3 Geochemical Data -- 4 U-Pb Dating -- 5 Results of the Studies -- 6 Conclusions -- References -- Tectonic Model and Evolution of the Arctic -- 1 Tectonic Model of the Arctic -- 2 Tectonic Evolution of the Eastern Arctic -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Knies, Jochen; Matthiessen, Jens; Vogt, Christoph; Laberg, Jan Sverre; Hjelstuen, Berit O; Smelror, Morten; Larsen, Eiliv; Andreassen, Karin; Eidvin, Tor; Vorren, Tore O (2009): The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy. Quaternary Science Reviews, 28(9-10), 812-829, https://doi.org/10.1016/j.quascirev.2008.12.002
    Publication Date: 2024-01-09
    Description: Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6-2.4 Ma). (2) A transitional growth phase (2.4-1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic-Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Channell, James E T; Smelror, Morten; Jansen, Eystein; Higgins, Sean M; Lehman, Benoît; Eidvin, Tor; Solheim, Anders (1999): Age models for glacial fan deposits off East Greenland and Svalbard (Sites 986 and 987). In: Raymo, ME; Jansen, E; Blum, P; Herbert, TD (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 162, 1-18, https://doi.org/10.2973/odp.proc.sr.162.008.1999
    Publication Date: 2024-01-09
    Description: Cores recovered at Sites 986 and 987 comprise glacial fan sedimentation associated with the Svalbard-Barents Sea and Greenland Ice Sheets, respectively. At Site 986, the top 150 m and the basal 250 m yielded interpretable magnetic stratigraphies. The record from the intervening 550 m is compromised by drilling-related core deformation, poor recovery, and numerous debris flows. The uppermost 150 m appears to record the Brunhes/Matuyama boundary and the Jaramillo Subchron. The base of the drilled section (at ~950 meters below seafloor [mbsf]) is interpreted to lie within the Matuyama Chron (age 〈2.58 Ma) with an apparent normal polarity interval in the ~730-750 mbsf interval. Dinoflagellate cyst biostratigraphy and Sr isotopic ratios are consistent with a Matuyama age for the base of the drilled section and with the normal polarity interval as the Olduvai Subchron. On the other hand, the last occurrence of Neogloboquadrina atlantica (sinistral) and the last common occurrence of the warm-dwelling Globigerina bulloides at 647-650 mbsf in Hole 986D indicate an age for this level of ~2.3 Ma, inconsistent with the designation of the Olduvai Subchron in the ~730-750 mbsf interval. If the age at 647-650 mbsf in Hole 986D is taken as 2.3 Ma and the base of the hole lies within the Matuyama Chron, then the sedimentation rate in the basal 300 m of the cored section averages 1 m/k.y. At Site 987, the magnetic stratigraphy is fairly unambiguous throughout the section and yields an age of 7.5 Ma (Chron 4n) for the base of the drilled section. The paucity of calcareous and siliceous microfossils precludes biostratigraphic corroboration of the magnetostratigraphic interpretation, although dinoflagellate cysts provide general support, particularly at the base of the section. The age model indicates relatively low sedimentation rates (~5 cm/k.y.) at the base of the section with rates at least four to five times greater during intervals of debris flows at ~5-4.6 and ~2.6 Ma.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...