GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 27 (2000), S. 258-269 
    ISSN: 1432-2021
    Keywords: Key words Chlorites ; Iron lattice sites ; Mössbauer spectroscopy ; Molecular orbital calculations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  The different Fe2+ lattice sites in iron-rich chlorites have been characterized by Mössbauer spectroscopy and molecular orbital calculations in local density approximation. The Mössbauer measurements were recorded at 77 K within a small velocity range (±3.5 mm s−1) to provide high energy resolution. Additionally, measurements were recorded in a wider velocity range (±10.5 mm s−1) at temperatures of 140, 200, and 250 K in an applied field (7 T) parallel to the γ-beam. The zero-field spectra were analyzed with discrete Lorentzian-shaped quadrupole doublets to account for the Fe2+ sites M1, M2, and M3 and with a quadrupole distribution for Fe3+ sites. Such a procedure is justified by the results obtained from MO calculations, which reveal that different anion (OH−) distributions in the first coordination sphere of M1, M2, and M3 positions have more influence on the Fe2+ quadrupole splitting than cationic disorder. The spectra recorded in applied field were analyzed in the spin-Hamiltonian approximation, yielding a negative sign for the electric field gradient (efg) of Fe2+ in the M1, M2, and M3 positions. The results of the MO calculations are in quantitative agreement with experiment and reveal that differences in the quadrupole splittings (ΔE Q ), their temperature dependence and in the isomer shifts (δ) of Fe2+ in M1, M2, and M3 positions can theoretically by justified. Therefore, the combined Mössbauer and MO investigation shows that the three Fe2+ lattice sites in the chlorites investigated here can be discriminated according to their ΔE Q -δ parameter pairs. With the calculated average iron-oxygen bond strength, the MO study provides an explanation for the observed trend that the population of the three lattice sites by Fe2+ increases according to the relation M1 〈 M2 〈 M3.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words High-valent iron porphyrins ; Molecular orbital calculations ; Hydroxylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The reaction mechanism for the hydroxylation of benzene and monofluorobenzene, catalysed by a ferryl-oxo porphyrin cation radical complex (compound) is described by electronic structure calculations in local spin density approximation. The active site of the enzyme is modelled as a six-coordinated (Por+)Fe(IV)O a2u complex with imidazole or H3CS– as the axial ligand. The substrates under study are benzene and fluorobenzene, with the site of attack in para, meta and ortho position with respect to F. Two reaction pathways are investigated, with direct oxygen attack leading to a tetrahedral intermediate and arene oxide formation as a primary reaction step. The calculations show that the arene oxide pathway is distinctly less probable, that hydroxylation by an H3CS––coordinated complex is energetically favoured compared with imidazole, and that the para position with respect to F is the preferred site for hydroxylation. A partial electron transfer from the substrate to the porphyrin during the reaction is obtained in all cases. The resulting charge distribution and spin density of the substrates reveal the transition state as a combination of a cation and a radical σ-adduct intermediate with slightly more radical character in the case of H3CS– as axial ligand. A detailed analysis of the orbital interactions along the reaction pathway yields basically different mechanisms for the modes of substrate–porphyrin electron transfer and rupture of the Fe–O bond. In the imidazole-coordinated complex an antibonding π*(Fe–O) orbital is populated, whereas in the H3CS––coordinated system a shift of electron density occurs from the Fe–O bond region into the Fe–S bond.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...