GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 76 (2009): 113-133, doi:10.1016/j.jmarsys.2008.05.010.
    Description: Depth-integrated primary productivity (PP) estimates obtained from satellite ocean color based models (SatPPMs) and those generated from biogeochemical ocean general circulation models (BOGCMs) represent a key resource for biogeochemical and ecological studies at global as well as regional scales. Calibration and validation of these PP models are not straightforward, however, and comparative studies show large differences between model estimates. The goal of this paper is to compare PP estimates obtained from 30 different models (21 SatPPMs and 9 BOGCMs) to a tropical Pacific PP database consisting of ~1000 14C measurements spanning more than a decade (1983- 1996). Primary findings include: skill varied significantly between models, but performance was not a function of model complexity or type (i.e. SatPPM vs. BOGCM); nearly all models underestimated the observed variance of PP, specifically yielding too few low PP (〈 0.2 gC m-2d-2) values; more than half of the total root-mean-squared model-data differences associated with the satellite-based PP models might be accounted for by uncertainties in the input variables and/or the PP data; and the tropical Pacific database captures a broad scale shift from low biomass-normalized productivity in the 1980s to higher biomass-normalized productivity in the 1990s, which was not successfully captured by any of the models. This latter result suggests that interdecadal and global changes will be a significant challenge for both SatPPMs and BOGCMs. Finally, average root-mean-squared differences between in situ PP data on the equator at 140°W and PP estimates from the satellite-based productivity models were 58% lower than analogous values computed in a previous PP model comparison six years ago. The success of these types of comparison exercises is illustrated by the continual modification and improvement of the participating models and the resulting increase in model skill.
    Description: This research was supported by a grant from the National Aeronautics and Space Agency Ocean Biology and Biogeochemistry program (NNG06GA03G), as well as by numerous other grants to the various participating investigators
    Keywords: Primary production ; Modeling ; Remote sensing ; Satellite ocean color ; Statistical analysis ; Tropical Pacific Ocean (15°N to 15°S and 125°E to 95°W)
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 6319–6328, doi:10.1002/2013JC008939.
    Description: Strong and strategic collaborations among experts from academia, federal operational centers, and industry have been forged to create a U.S. IOOS Coastal and Ocean Modeling Testbed (COMT). The COMT mission is to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improved operational ocean products and services. This is achieved via the evaluation of existing technology or the development of new technology depending on the status of technology within the research community. The initial phase of the COMT has addressed three coastal and ocean prediction challenges of great societal importance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A fourth effort concentrated on providing and refining the cyberinfrastructure and cyber tools to support the modeling work and to advance interoperability and community access to the COMT archive. This paper presents an overview of the initiation of the COMT, the findings of each team and a discussion of the role of the COMT in research to operations and its interface with the coastal and ocean modeling community in general. Detailed technical results are presented in the accompanying series of 16 technical papers in this special issue.
    Description: This project was supported by NOAA via the IOOS Office, award NA10NOS0120063 and NA11NOS0120141, and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant OCI- 1053575.
    Keywords: Modeling ; Hypoxia ; Inundation ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...