GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Methanogenesis  (1)
Document type
Publisher
Years
  • 1
    ISSN: 1432-072X
    Keywords: Acetate oxidation ; Syntrophy ; Methanogenesis ; Carbon monoxide dehydrogenase ; Methanobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We recently isolated an acetate-oxidizing rodshaped eubacterium (AOR) which was capable of oxidizing acetate to CO2 when grown in coculture with the hydrogenotrophic methanogen Methanobacterium sp. strain THF. The AOR was also capable of growing axenically on H2CO2 which it converted to acetate. Previous results for the acetate oxidizing coculture showed isotopic exchange between acetate and CO2, suggesting that the AOR was using a pathway for acetate oxidation resembling a reveral of the acetogenic (carbon monoxide) pathway. In this study, it was found that production of 14CO2 from 14CH3COO- by the coculture was inhibited by 200 μM cyanide, while methanogenesis from H2−CO2 was unaffected, implying the involvement of carbon monoxide dehydrogenase (CODH) in acetate oxidation. CODH was present at 0.055 μmol methyl viologen reduced min-1 mg-1 protein in extracts of Methanobacterium sp. strain THF, but was present in higher levels in the acetate oxidizing coculture and in the AOR grown axenically and on H2−CO2 (2.0 and 6.4 μmol min-1 mg-1 protein respectively). Anaerobic activity stains for CODH in native polyacrylamide gels from the AOR coculture showed components co-migrating with bands from both organisms, as well as an additional band in extracts of the coculture. Formate dehydrogenase (FDH) was present in both the AOR coculture and monoculture but not in extracts of H2−CO2 grown cells of Methanobacterium sp. strain THF. Formyltetrahydrofolate (FTHF) synthetase was not detectable in extracts of the AOR monoculture or coculture, although it was found in high amounts in extracts of H2−CO2 grown cells of the thermophilic acetogen Acetogenium kivui. Extracts of H2−CO2 grown cells of the AOR showed a fluorescence spectrum typical of pterin derivatives. Bioassay for folates showed levels to be at anabolic rather than catabolic levels. It is possible that the AOR uses pterins distinct from folate for catabolism. Isocitrate dehydrogenase, a citric acid cycle enzyme, was also present in the AOR, but at anabolic levels and α-ketoglutarate dehydrogenase was not detectable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...