GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Meteorology.  (1)
  • Cambridge :Cambridge University Press,  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
  • Cambridge :Cambridge University Press,  (1)
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    Schlagwort(e): Meteorology. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Complete with numerous exercise sets and solutions, Dynamics of the Atmosphere is written for advanced undergraduate and graduate students of meteorology and atmospheric science. The book consists of two parts, the first presenting the mathematical tools needed for a thorough understanding of dynamic atmospheric phenomena discussed in the second part.
    Materialart: Online-Ressource
    Seiten: 1 online resource (739 pages)
    Ausgabe: 1st ed.
    ISBN: 9780511202957
    DDC: 551.5
    Sprache: Englisch
    Anmerkung: Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Part 1 Mathematical tools -- M1 Algebra of vectors -- M1.1 Basic concepts and definitions -- M1.2 Reference frames -- M1.3 Vector multiplication -- M1.3.1 The scalar product of two vectors -- M1.3.2 The vector product of two vectors -- M1.3.3 The dyadic representation, the general product of two vectors -- M1.3.4 The scalar triple product -- M1.3.5 The vectorial triple product -- M1.3.6 The scalar product of a vector with a dyadic -- M1.3.7 Products involving four vectors -- M1.4 Reciprocal coordinate systems -- M1.5 Vector representations -- M1.6 Products of vectors in general coordinate systems -- M1.7 Problems -- M2 Vector functions -- M2.1 Basic definitions and operations -- M2.2 Special dyadics -- M2.2.1 The conjugate dyadic -- M2.2.2 The symmetric dyadic -- M2.2.3 The antisymmetric or skew-symmetric dyadic -- M2.2.4 The adjoint dyadic -- M2.2.5 The reciprocal dyadic -- M2.3 Principal-axis transformation of symmetric tensors -- M2.4 Invariants of a dyadic -- M2.4.1 The first scalar of a dyadic -- M2.4.2 The vector of a dyadic -- M2.4.3 The second scalar of a dyadic -- M2.4.4 The third scalar of a dyadic -- M2.5 Tensor algebra -- M2.6 Problems -- M3 Differential relations -- M3.1 Differentiation of extensive functions -- M3.2 The Hamilton operator in generalized coordinate systems -- M3.3 The spatial derivative of the basis vectors -- M3.4 Differential invariants in generalized coordinate systems -- M3.4.1 The first scalar or the divergence of the local dyadic… -- M3.4.2 The Laplacian of a scalar field function -- M3.4.3 The vector of the local dyadic… -- M3.5 Additional applications -- M3.6 Problems -- M4 Coordinate transformations -- M4.1 Transformation relations of time-independent coordinate systems -- M4.1.1 Introduction. , M4.1.2 Transformation of basis vectors and coordinate differentials -- M4.1.3 Transformation of vectors and dyadics -- M4.2 Transformation relations of time-dependent coordinate systems -- M4.2.1 The addition theorem of the velocities -- M4.2.2 Orthogonal q systems -- M4.2.3 The generalized vertical coordinate -- M4.3 Problems -- M5 The method of covariant differentiation -- M5.1 Spatial differentiation of vectors and dyadics -- M5.2 Time differentiation of vectors and dyadics -- M5.3 The local dyadic of v -- M5.4 Problems -- M6 Integral operations -- M6.1 Curves, surfaces, and volumes in the general q system -- M6.2 Line integrals, surface integrals, and volume integrals -- M6.3 Integral theorems -- M6.3.1 Stokes' integral theorem -- M6.3.2 Gauss' divergence theorem -- M6.4 Fluid lines, surfaces, and volumes -- M6.5 Time differentiation fluid integrals -- M6.5.1 Time differentiation of fluid line integrals -- M6.5.2 Time differentiation of fluid surface integrals -- M6.5.3 Time differentiation of fluid volume integrals -- M6.6 The general form of the budget equation -- M6.6.1 The budget equation for the partial masses of atmospheric air -- M6.6.2 The first law of thermodynamics -- M6.7 Gauss' theorem and the Dirac delta function -- M6.8 Solution of Poisson's differential equation -- M6.9 Appendix: Remarks on Euclidian and Riemannian spaces -- M6.10 Problems -- M7 Introduction to the concepts of nonlinear dynamics -- M7.1 One-dimensional flow -- M7.1.1 Fixed points and stability -- M7.1.2 Bifurcation -- M7.1.2.1 Saddle-node bifurcation -- M7.1.2.2 Transcritical bifurcation -- M7.1.2.3 Pitchfork bifurcation -- M7.2 Two-dimensional flow -- M7.2.1 Linear stability analysis -- M7.2.2 Classification of linear systems -- M7.2.3 Two-dimensional nonlinear systems -- M7.2.4 Limit cycles -- M7.2.5 Hopf bifurcation -- M7.2.6 The Liapunov function. , M7.2.7 Fractal dimensions -- Part 2 Dynamics of the atmosphere -- 1 The laws of atmospheric motion -- 1.1 The equation of absolute motion -- 1.2 The energy budget in the absolute reference system -- 1.3 The geographical coordinate system -- 1.3.1 Operations involving the rotational velocity vOmega -- 1.3.1.1 The divergence of v in the geographical coordinate system -- 1.3.1.2 Rotation and the vector gradient of vOmega -- 1.3.2 The centrifugal potential -- 1.3.3 The budget operator -- 1.4 The equation of relative motion -- 1.5 The energy budget of the general relative system -- 1.6 The decomposition of the equation of motion -- 1.7 Problems -- 2 Scale analysis -- 2.1 An outline of the method -- 2.2 Practical formulation of the dimensionless flow numbers -- 2.3 Scale analysis of large-scale frictionless motion -- 2.4 The geostrophic wind and the Euler wind -- 2.5 The equation of motion on a tangential plane -- 2.6 Problems -- 3 The material and the local description of flow -- 3.1 The description of Lagrange -- 3.2 Lagrange's version of the continuity equation -- 3.2.1 Preliminaries -- 3.2.2 The mass-conservation equation in the Lagrangian form -- 3.3 An example of the use of Lagrangian coordinates -- 3.3.1 General remarks -- 3.3.2 The thermo-hydrodynamic equations -- 3.3.3 Difference approximations -- 3.3.4 Initial values and boundary conditions -- 3.3.4.1 Approximate determination of… -- 3.3.4.2 The interpolated velocity…on the trajectory -- 3.3.5 The numerical stability condition -- 3.4 The local description of Euler -- 3.5 Transformation from the Eulerian to the Lagrangian system -- 3.6 Problems -- 4 Atmospheric flow fields -- 4.1 The velocity dyadic -- 4.1.1 The three-dimensional velocity dyadic -- 4.1.2 The two-dimensional velocity dyadic -- 4.2 The deformation of the continuum -- 4.2.1 The representation of the wind field. , 4.2.2 Flow patterns and stability -- 4.3 Individual changes with time of geometric fluid configurations -- 4.3.1 The relative change of the material line element -- 4.3.2 The directional change of the material line element -- 4.3.3 The change in volume of a rectangular fluid box -- 4.3.4 Two-dimensional examples -- 4.4 Problems -- 5 The Navier-Stokes stress tensor -- 5.1 The general stress tensor -- 5.1.1 Volume forces -- 5.1.2 Surface forces -- 5.2 Equilibrium conditions in the stress field -- 5.3 Symmetry of the stress tensor -- 5.4 The frictional stress tensor and the deformation dyadic -- 5.5 Problems -- 6 The Helmholtz theorem -- 6.1 The three-dimensional Helmholtz theorem -- 6.2 The two-dimensional Helmholtz theorem -- 6.3 Problems -- 7 Kinematics of two-dimensional flow -- 7.1 Atmospheric flow fields -- 7.2 Two-dimensional streamlines and normals -- 7.2.1 Two-dimensional streamlines -- 7.2.2 Construction of normals -- 7.3 Streamlines in a drifting coordinate system -- 7.4 Problems -- 8 Natural coordinates -- 8.1 Introduction -- 8.2 Differential definitions of the coordinate lines -- 8.3 Metric relationships -- 8.4 Blaton's equation -- 8.5 Individual and local time derivatives of the velocity -- 8.6 Differential invariants -- 8.6.1 The horizontal divergence of the velocity -- 8.6.2 Vorticity or the vertical component of… -- 8.6.3 The Jacobian operator and the Laplacian -- 8.7 The equation of motion for frictionless horizontal flow -- 8.8 The gradient wind relation -- 8.9 Problems -- 9 Boundary surfaces and boundary conditions -- 9.1 Introduction -- 9.2 Differential operations at discontinuity surfaces -- 9.3 Particle invariance at boundary surfaces, displacement velocities -- 9.4 The kinematic boundary-surface condition -- 9.4.1 External boundary surfaces -- 9.4.2 Internal boundary surfaces. , 9.4.3 The generalized vertical velocity at boundary surfaces -- 9.5 The dynamic boundary-surface condition -- 9.6 The zeroth-order discontinuity surface -- 9.6.1 The inclination of the zeroth-order DS -- 9.6.2 A discontinuity surface of zeroth-order in the geostrophic wind field -- 9.7 An example of a first-order discontinuity surface -- 9.8 Problems -- 10 Circulation and vorticity theorems -- 10.1 Ertel's form of the continuity equation -- 10.2 The baroclinic Weber transformation -- 10.3 The baroclinic Ertel-Rossby invariant -- 10.4 Circulation and vorticity theorems for frictionless baroclinic flow -- 10.4.1 A general baroclinic vortex theorem -- 10.4.2 Ertel's vortex theorem -- 10.4.3 Ertel's conservation theorem, potential vorticity -- 10.4.4 The general vorticity theorem -- 10.4.5 Rossby's formulation of the potential vorticity -- 10.4.6 Helmholtz's baroclinic vortex theorem -- 10.4.7 Thomson's and Bjerkness' baroclinic circulation theorems -- 10.4.8 Interpretation of Bjerkness' circulation theorem -- 10.5 Circulation and vorticity theorems for frictionless barotropic flow -- 10.5.1 The barotropic Ertel-Rossby invariant -- 10.5.2 Barotropic vortex theorems of Ertel, Helmholtz, and Thomson -- 10.5.3 Vortex lines and vortex tubes -- 10.5.4 The vorticity theorem for the barotropic atmosphere -- 10.6 Problems -- 11 Turbulent systems -- 11.1 Simple averages and fluctuations -- 11.2 Weighted averages and fluctuations -- 11.3 Averaging the individual time derivative and the budget operator -- 11.4 Integral means -- 11.5 Budget equations of the turbulent system -- 11.6 The energy budget of the turbulent system -- 11.7 Diagnostic and prognostic equations of turbulent systems -- 11.8 Production of entropy in the microturbulent system -- 11.8.1 Scalar fluxes -- 11.8.2 Vectorial fluxes -- 11.8.3 The scalar phenomenological equations. , 11.8.4 The vectorial phenomenological equations.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...