GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Liver Cell volume regulation Na+ conductance Na+/H+ antiport Na+-K+-2Cl– symport Na+/K+-ATPase  (1)
  • Na+ conductance  (1)
Document type
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 424 (1993), S. 145-151 
    ISSN: 1432-2013
    Keywords: Rat hepatocytes ; Electrophysiology ; Membrane potentials ; Na+ conductance ; Bile acids ; Taurocholic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Rat hepatocytes in primary culture were impaled with conventional microelectrodes. Addition of 5–100 μmol/l taurocholate led to a slowly developing depolarization that was maximal at 50 μmol/l (10.5±1.5 mV, n=15) and not reversible. The effect was Na+ dependent and decreased in cells preincubated with 1 μmol/l taurocholate. Increasing external K+ tenfold depolarized the cells by 12.3±2.3 mV under control conditions and by 6.3±1.2 mV with 50 μmol/l taurocholate present (n=7). Depolarization by 1 mmol/l Ba2+ was 7.6±0.8 mV and 6.0±0.7 mV (n=9) before and after addition of taurocholate, respectively. Cable analysis and Na+ substitution experiments reveal that this apparent decrease in K+ conductance reflects an actual increase in Na+ conductance: in the presence of taurocholate, specific cell membrane resistance decreased from 2.8 to 2.3 kΩ · cm2 · Na+ substitution by 95% depolarized cell membranes by 8.9±2.9 mV (n=9), probably due to indirect effects on K+ conductance via changes in cell pH. With taurocholate present, the same manoeuvre changed membrane voltages by −0.8±2.6 mV. When Na+ concentration was restored to 100% from solutions containing 5% Na+, cells hyperpolarized by 3.5±3.6 mV (n=7) under control conditions and depolarized by 4.4±2.9 mV in the presence of taurocholate, respectively. In Cl− substitution experiments, there was no evidence for changes in Cl− conductance by taurocholate. These results show that taurocholate-induced membrane depolarization is due to an increase in Na+ conductance probably via uptake of the bile acid.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 441 (2000), S. 12-24 
    ISSN: 1432-2013
    Keywords: Liver Cell volume regulation Na+ conductance Na+/H+ antiport Na+-K+-2Cl– symport Na+/K+-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The initial event in the regulatory volume increase (RVI) of rat hepatocytes is an influx of Na+ that is then exchanged for K+ via stimulation of Na+/K+-adenosine triphosphatase (ATPase). In this study, we analysed the activation pattern of the Na+ transporters underlying RVI as a function of the degree of hypertonic stress. In confluent primary cultures, four hypertonic conditions were tested (changes from 300 to 327, 360, 400 or 450 mosmol/l) and the activities of Na+ conductance, Na+/H+ antiport, Na+-K+-2Cl– symport and Na+/K+-ATPase were quantified using intracellular microelectrodes, microfluorometry and time-dependent, furosemide- or ouabain-sensitive 86Rb+ uptake, respectively. Neither Na+ conductance nor Na+-K+-2Cl– symport responded to 327 mosmol/l. At 360, 400 and 450 mosmol/l, uptake via these transporters would lead to increases of cell Na+ by 33.0, 49.0 and 49.0 and by 4.5, 10.4 and 9.2 mmol/l per 10 min, respectively. In contrast, Na+/H+ antiport exhibited 65% of its maximal activation already at 327 mosmol/l. At the four osmolarities tested, this transporter would augment cell Na+ by 6.9, 8.9, 9.8 and 10.6 mmol/l per 10 min. The sums of Na+ import were consistent with the amounts of Na+ exported via Na+/K+-ATPase plus the actual increases of cell Na+ (21.2, 58.5, 63.6 and 68.3 mmol/l per 10 min and 2.2, 4.0, 6.3 and 8.2 mmol/l, respectively). In addition, these elevations of cell Na+ plus the increases of cell K+ (via Na+/K+-ATPase) that amounted to 5.0, 6.5, 17.5 and 18.4 mmol/l were consistent with the increases of intracellular osmotic (cationic) activity of 2.5, 11.5, 21.0 and 28.5 mmol/l, respectively, computed from RVI data. It is concluded that the principle of rat hepatocyte RVI, i.e. an initial uptake of Na+ that is then exchanged for K+ via Na+/K+-ATPase, is realized over the entire range of 9-50% hypertonicity tested. The set-point for the activation of RVI clearly lies below 327 mosmol/l. Na+/H+ antiport is the most sensitive Na+ importer involved in RVI, whereas Na+ conductance plays the prominent role from 360 mosmol/l upwards.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...