GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1439-6327
    Schlagwort(e): Exercise ; Oxidative stress ; Liver/kidney ; Lipid peroxidation ; Superoxide dismutase derivative
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TBARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TBARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...