GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1936–E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.
    Description: In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST 〉 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
    Description: This work was supported through the U.S. Office of Naval Research’s Departmental Research Initiative: Monsoon Intraseasonal Oscillations in the Bay of Bengal, the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons Program, and the Sri Lankan National Aquatic Resources Research and Development Agency. We thank the Captain and crew of the R/V Thompson for their help in data collection. Surface atmospheric fields included fluxes were quality controlled and processed by the Boundary Layer Observations and Processes Team within the NOAA Physical Sciences Laboratory. Forecast analysis was completed by India Meteorological Department. Drone image was taken by Shreyas Kamat with annotations by Gualtiero Spiro Jaeger. We also recognize the numerous researchers who supported cruise- and land-based measurements. This work represents Lamont-Doherty Earth Observatory contribution number 8503, and PMEL contribution number 5193.
    Description: 2022-04-01
    Keywords: Atmosphere-ocean interaction ; Monsoons ; In situ atmospheric observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-13
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(2), (2022): 271–282. https://doi.org/10.1175/jtech-d-21-0069.1.
    Description: The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.
    Description: KJJ and RV thank Ministry of Earth Sciences (MoES), Government of India, Secretary, MoES, and Director, NIOT, for the support and encouragement in carrying out the work under the National Monsoon Mission, Ocean Mixing and Monsoon (OMM) program. AT, JTF, and RAW thank Office of Naval Research Grants N00014-19-12410 and N00014-17-12880, United States, for funding and support. The OOS team at NIOT is acknowledged for their efforts in maintaining the OMNI buoy network in North Indian Ocean. We acknowledge Dr. B.W. Blomquist, University of Colorado, for his support in computing clear-sky radiation and Iury T. Simoes-Sousa, University of Massachusetts, Dartmouth, for the graphics. NCMRWF, MoES, Government of India, is acknowledged for NGFS reanalysis dataset, which is produced under the collaboration between NCMRWF, IITM, and IMD.
    Keywords: Algorithms ; Buoy observations ; In situ oceanic observations ; Instrumentation/sensors ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...