GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hydrothermal  (2)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 71 (2007): 1170-1182, doi:10.1016/j.gca.2006.11.017.
    Description: Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡ δ33S – 0.515 δ34S) values of up to 0.04 ‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006 ‰ (2σ). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10° N, 13° N, and 21° S and Mid-Atlantic Ridge (MAR) 37° N yield Δ33S values ranging from –0.002 to 0.033 and δ34S from –0.5 to 5.3 ‰. The combined δ34S and Δ33S systematics reveal that 73 to 89 % of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27 % from seawater-derived sulfate. Pyrite from EPR 13° N and marcasite from MAR 37° N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.
    Description: S. Ono thanks the Agouron Institute for financial support and funding from the NASA Astrobiology Institute and Carnegie Institution of Washington for supporting the analytical costs. Funding for O. Rouxel is from the Deep Ocean Exploration Institute at WHOI.
    Keywords: Sulfur isotope ; Multiple-isotope ; Mass-dependent ; S-33 ; S-36 ; Sulfur cycle ; Hydrothermal ; Vent ; Mass-independent ; Isotope fractionation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(9), (2020): e2020JB019743, doi:10.1029/2020JB019743.
    Description: A multiscale magnetic survey of the northern basin of Yellowstone Lake was undertaken in 2016 as part of the Hydrothermal Dynamics of Yellowstone Lake Project (HD‐YLAKE)—a broad research effort to characterize the cause‐and‐effect relationships between geologic and environmental processes and hydrothermal activity on the lake floor. The magnetic survey includes lake surface, regional aeromagnetic, and near‐bottom autonomous underwater vehicle (AUV) data. The study reveals a strong contrast between the northeastern lake basin, characterized by a regional magnetic low punctuated by stronger local magnetic lows, many of which host hydrothermal vent activity, and the northwestern lake basin with higher‐amplitude magnetic anomalies and no obvious hydrothermal activity or punctuated magnetic lows. The boundary between these two regions is marked by a steep gradient in heat flow and magnetic values, likely reflecting a significant structure within the currently active ~20‐km‐long Eagle Bay‐Lake Hotel fault zone that may be related to the ~2.08‐Ma Huckleberry Ridge caldera rim. Modeling suggests that the broad northeastern magnetic low reflects both a shallower Curie isotherm and widespread hydrothermal activity that has demagnetized the rock. Along the western lake shoreline are sinuous‐shaped, high‐amplitude magnetic anomaly highs, interpreted as lava flow fronts of upper units of the West Thumb rhyolite. The AUV magnetic survey shows decreased magnetization at the periphery of the active Deep Hole hydrothermal vent. We postulate that lower magnetization in the outer zone results from enhanced hydrothermal alteration of rhyolite by hydrothermal condensates while the vapor‐dominated center of the vent is less altered.
    Description: The lake surface and AUV magnetic data were acquired under National Park Service research permit YELL‐2016‐SCI‐7018 and the 2016 aeromagnetic data under research permit YELL‐2016‐SCI‐7056. We thank Sarah Haas, Stacey Gunther, Erik Oberg, Annie Carlson, and Patricia Bigelow at the Yellowstone Center for Resources for assistance with permitting and logistics, Ranger Jackie Sene for assistance with logistics and safety at Bridge Bay, Bob Gresswell for providing us with the U.S. Geological Survey (USGS) boat Alamar, the boat pilot Nick Heredia, and Robert Harris and Shaul Hurwitz for fruitful discussions. We are very thankful to Ocean Floor Geophysics (Brian Claus and Steve Bloomer) who provided the magnetometer for the AUV survey and preprocessed the data, and to the REMUS 600 team (Greg Packard and Greg Kurras) for operating and optimizing the AUV during lake operations. Data from the Newport and Boulder observatories were used to process the survey data. We thank the USGS Geomagnetism Program for supporting their operation and INTERMAGNET for promoting high standards of magnetic observatory practice (www.intermagnet.org). This research was funded by the National Science Foundation's Integrated Earth Systems program EAR‐1516361 (HD‐YLAKE project), USGS Mineral Resource and Volcano Hazard Programs, and benefited from major in‐kind support from the USGS Yellowstone Volcano Observatory. Maurice Tivey was supported under National Science Foundation Grant OCE‐1557455. During the course of this study, Claire Bouligand was a visiting scientist at the USGS in Menlo Park, California, USA, benefited from a delegation to Centre National de la Recherche Scientifique (CNRS), and received funding from CNRS‐INSU program SYSTER. ISTerre is part of Labex OSUG@2020 (ANR10 LABX56). Any use of trade, firm, or product names is for descriptive purposes and does not imply endorsement by the U.S. Government.
    Description: 2021-01-27
    Keywords: Hydrothermal ; Magnetic anomalies ; Yellowstone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...