GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GS900963; Marion Dufresne (1972); MD65; MD90-963; PC; Piston corer; SEYMAMA/SHIVA  (2)
Document type
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rostek, Frauke; Bard, Edouard; Beaufort, Luc; Sonzogni, Corinne; Ganssen, Gerald M (1997): Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 44(6-7), 1461-1480, https://doi.org/10.1016/S0967-0645(97)00008-8
    Publication Date: 2023-06-27
    Description: Deep-sea sediments of two cores from the western (TY93-929/P) and the southeastern (MD900963) Arabian Sea were used to study the variations of the Indian monsoon during previous climatic cycles. Core TY93-929/P was located between the SW monsoon driven upwelling centres off Somalia and Oman, which are characterized by large seasonal sea surface temperature (SST) and particle flux changes. By contrast, core MD900963, was situated near the Maldives platform, an equatorial ocean site with a rather small SST seasonality (less than 2°C). For both cores we have reconstructed SST variations by means of the unsaturation ratio of C37 alkenones, which is compared with the delta18O records established on planktonic foraminifera. In general, the SST records follow the delta18O variations, with an SST maximum during oxygen isotope stage 5.5 (the Last Interglacial at about 120-130 kyr) and a broad SST minimum during isotope stage 4 and 3.3 (approximately 40-50 kyr). The SST difference between the Holocene and the Last Glacial Maximum (LGM) is of the order of 2°C. In both cores the SSTs during isotope stage 6 are distinctly higher by 1-2°C than the cold SST minima during the last glacial cycle (LGM and stage 3). To reconstruct qualitatively the past productivity variations for the two cores, we used the concentrations and fluxes of alkenones and organic carbon, together with a productivity index based on coccolith species (Florisphaera profunda relative abundance). Within each core, there is a general agreement between the different palaeoproductivity proxies. In the southeastern Arabian Sea (core MD900963), glacial stages correspond to relatively high productivity, whereas warm interstadials coincide with low productivity. All time series of productivity proxies are dominated by a cyclicity of about 21-23 kyr, which corresponds to the insolation precessional cycle. A hypothesis could be that the NE monsoon winds were stronger during the glacial stages, which induced deepening of the surface mixed layer and injection of nutrients to the euphotic zone. By contrast, the records are more complicated in the upwelling region of the western Arabian Sea (core TY93-929/P). This is partly due to large changes in the sedimentation rates, which were higher during specific periods (isotope stages 6, 5.4, 5.2, 3 and 2). Unlike core MD900963, no simple relationship emerges from the comparison between the delta18O stratigraphy and productivity records. The greater complexity observed for core TY93-929/P could be the result of the superimposition of different patterns of productivity fluctuations for the two monsoon seasons, the SW monsoon being enhanced during interglacial periods, whereas the NE monsoon was increased during glacial intervals. A similar line of reasoning also could help explain the SST records by the superimposition of variations of three components: global atmospheric temperature, and SW and NE monsoon dynamics.
    Keywords: GS900963; Marion Dufresne (1972); MD65; MD90-963; PC; Piston corer; SEYMAMA/SHIVA
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pailler, Delphine; Bard, Edouard; Rostek, Frauke; Zheng, Y; Mortlock, Richard A; van Geen, Alexander (2002): Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochimica et Cosmochimica Acta, 66(5), 849-865, https://doi.org/10.1016/S0016-7037(01)00817-1
    Publication Date: 2023-06-27
    Description: Authigenic metals (uranium, cadmium, and molybdenum), organic carbon (OC) and total C37 alkenone (totC37) concentrations were measured for the last 350 kyr in core MD900963, located in the eastern equatorial Arabian Sea. Authigenic metal concentrations on a carbonate-free basis range between 1 and 17 ppm, 0.5 and 6 ppm, and 0.5 and 4 ppm for U, Cd, and Mo, respectively. The profiles are characterized by well-defined 23 kyr cycles between oxic and mildly suboxic conditions. The redox-sensitive metal profiles also follow variations in the concentrations of OC (0.2-0.9%) and alkenones (0.2-6.7 ppm). The coupled variations in inorganic and organic constituents are attributed to a 23-kyr cycle in primary production above site MD900963, as suggested by clear correlations with independent micropaleontologic proxies (primary productivity indices based on foraminifera and coccoliths and fragmentation of foraminiferal shells). The 23-kyr cycles do appear to be primarily driven by productivity rather than changes in bottom water oxygen. Comparison with other records indicates that if this interpretation is correct, productivity variations across much of the Indian Ocean have been dominated by precessional forcing, with high productivity in phase with low summer insolation in the Northern Hemisphere. This interpretation contrasts with the traditional attribution of enhanced productivity in the Indian Ocean with periods of high summer insolation.
    Keywords: GS900963; Marion Dufresne (1972); MD65; MD90-963; PC; Piston corer; SEYMAMA/SHIVA
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...