GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 284 (2009): 88-113, doi:10.1016/j.palaeo.2009.08.020.
    Description: Smaller size is generally seen as a negative response of organisms to stressful environmental conditions, associated with low diversity and species dominance. The mean size of the coccolithophorids decreased through the Neogene, leading to the prediction that their extant representatives are characterized by poor diversification and low specialization. The study of the (exo)coccospheres of selected taxa in the order Syracosphaerales negates this prediction, revealing that on the contrary some extant lineages are highly diversified and remarkably specialized. Whereas the general role of coccoliths remains indeterminate, this analysis suggests that some highly derived coccoliths may be modified for the collection of food particles, including picoplankton, thus implying that mixotrophy may characterize these lineages. In the extant coccolithophorids, species richness of genera is inversely correlated with the size of cells, definitive evidence that small size is part of a morphologic strategy rather than a sign of evolutionary failure. Because of their extreme minuteness, the extant nannoplankton can be well compared to Lilliputians, but the trend toward size decrease in Neogene lineages is not attributable to the Lilliput effect described by Urbanek (1993).
    Keywords: Extant coccolithophorids ; Neogene ; Size ; Exococcospheres ; Functional morphology ; Mixotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...