GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMOC  (1)
  • Essential climate and ocean variables  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Centurioni, L. R., Turton, J., Lumpkin, R., Braasch, L., Brassington, G., Chao, Y., Charpentier, E., Chen, Z., Corlett, G., Dohan, K., Donlon, C., Gallage, C., Hormann, V., Ignatov, A., Ingleby, B., Jensen, R., Kelly-Gerreyn, B. A., Koszalka, I. M., Lin, X., Lindstrom, E., Maximenko, N., Merchant, C. J., Minnett, P., O'Carroll, A., Paluszkiewicz, T., Poli, P., Poulain, P., Reverdin, G., Sun, X., Swail, V., Thurston, S., Wu, L., Yu, L., Wang, B., & Zhang, D. Global in situ observations of essential climate and ocean variables at the air-sea interface. Frontiers in Marine Science, 6, (2019): 419, doi: 10.3389/fmars.2019.00419.
    Description: The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
    Description: LC, LB, and VH were supported by NOAA grant NA15OAR4320071 and ONR grant N00014-17-1-2517. RL was supported by NOAA/AOML and NOAA’s Ocean Observation and Monitoring Division. NM was partly supported by NASA grant NNX17AH43G. IK was supported by the Nordic Seas Eddy Exchanges (NorSEE) funded by the Norwegian Research Council (Grant 221780). DZ was partly funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. RJ was supported by the USACE’s Civil Works 096×3123.
    Keywords: Global in situ observations ; Air-sea interface ; Essential climate and ocean variables ; Climate variability and change ; Weather forecasting ; SVP drifters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., & Wu, L. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 541, (2020): 11629, doi:10.1016/j.epsl.2020.116294.
    Description: Reconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
    Description: We thank two anonymous reviewers for their useful and constructive comments. We also thank Editor Dr Laura F. Robinson for handling the manuscript. This work is supported by National Science Foundation of China No. 41630527, US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432). We would like to acknowledge the high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao). Data used to produce the results in this study can be obtained from HPSS at CISL: /home/sgu28/CTRACE_decadal or by contacting the authors.
    Keywords: Last Glacial Maximum ; AMOC ; Water mass ; Multi-proxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...