GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Vanadium ; Erythrocyte ; NMR ; Oxidative stress ; Diabetes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The action of vanadate on intact human erythrocytes was studied by 1H spin echo and 51V NMR spectroscopy as a model for the behaviour of vanadium(V) complexes in experimental diabetes. Vanadate is reduced by the intact erythrocyte at the expense of intracellular glutathione which rapidly depletes from the intracellular volume. Using the blocking agent 4,4′-diisothio-cyanatostilbene-2,2′-disulfonic acid (DIDS), which specifically blocks the anion transporter, vanadate reduction could be inhibited and glutathione depletion arrested. Thus, for the reaction with the intact cell to occur, vanadium(V) must cross the cell wall, possibly via the anion transporter. Nitrofurantoin was used to inhibit glutathione reductase in the erythrocyte suspensions. Under these conditions, treatment of the cells with vanadate induced glutathione oxidation prior to depletion. A study of the reaction of vanadate with haemolysate indicates that, without the influence of the membrane, rapid oxidation of glutathione to glutathione disulfide by the vanadyl cation occurs with no glutathione depletion, and that under these conditions vanadate reduction is incomplete. This study generates a model for the behaviour of vanadium complexes in vivo, providing a basis for the rational design and synthesis of new vanadium-based agents as insulin mimics. In essence, vanadium is transported across the membrane as vanadate(V), is reduced in situ by glutathione, and becomes complexed to a wide range of intracellular binding sites. Exchange reactions between glutathione and sulfhydryl groups present on haemoglobin and membrane lead to the depletion of glutathione from the cytosol.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1017
    Keywords: Surface-enhanced resonance Raman scattering (SERRS) ; Intact cells ; Erythrocyte ; Membrane proteins ; Bio-engineering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Semi-quantitative and direct determination of labelled sulphydryl groups on the surface of intact erythrocytes has been accomplished for the first time with surface-enhanced resonance Raman scattering (SERRS). The method, which involves the use of citrate-reduced silver colloids, is sensitive and selective. A 10−8 M effective concentration of picomole quantities of sulphydryl groups was determined in the presence of the normally overwhelming signal from haemoglobin. This seminal study suggests that SERRS may be applied to other in situ, site-directed labelling experiments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...