GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Microbiology. ; Microbial ecology. ; Environmental engineering. ; Biotechnology. ; Mikrobieller Abbau
    Description / Table of Contents: 1 Microbial degradation of aflatoxin -- 2 Recent Advances in Microbial Degradation -- 3 Microbial Degradation in the Biogas Production of Value-added Compounds -- 4 Microbial Degradation of Disinfectants -- 5 Application of Microalgae Consortia / Cocultures in Wastewater Treatment -- 6 Microbial Degradation of Food Products -- 7 Microbial Degradation of Xenobiotic Compounds -- 8 Microbial Degradation in the Production of Value-added Compounds: Biohydrogen from Dark Fermentation and Microbial Electrolysis cell -- 9 Microbial Degradation of Lipids -- 10 Microbial Degradation of Steroids -- 11 Microbial Degradation of Phenol and Phenolic Compounds -- 12 Microbial Degradation of Chlorophenolic Compounds -- 13 Microbial Degradation of Proteins -- 14 The Microbial Degradation of Microplastics -- 15 Microbial Degradation of Antibiotics from Effluents -- 16 Microbial Degradation of Oils -- 17 Microbial Degradation of Biowaste for Hydrogen Production -- 18 Microorganisms and Soil Bioremediation: An Environmental Approach -- 19 Applications of Microbes in Bioremediation of Water Pollutants. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 483 p. 88 illus., 34 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789811605185
    Series Statement: Environmental and Microbial Biotechnology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (302 pages)
    Edition: 1st ed.
    ISBN: 9780128218976
    DDC: 543
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Analytical Techniques for Environmental a... -- Copyright -- Contents -- Contributors -- Chapter 1: Conventional and advanced techniques of wastewater monitoring and treatment -- 1. Introduction -- 2. Water pollutants: Origin and consequences -- 3. Wastewater analysis -- 3.1. Lab-based analytical methods -- 3.2. Field monitoring techniques -- 3.2.1. Biosensors -- Biosensors for detection of organic contaminants in wastewater -- Biosensors for detection of inorganic contaminants in water -- Biosensors for detection of microorganisms in water -- 3.2.2. Nanoparticle-assisted sensing platform -- 3.2.3. Paper-based microfluidics sensors -- 3.2.4. Soft sensors -- 3.3. Wireless sensor networks -- 4. Wastewater treatment -- 4.1. Conventional wastewater treatment methods -- 4.1.1. Primary treatment -- 4.1.2. Secondary treatment -- Aerobic treatment -- Anaerobic treatment -- Activated sludge process -- Biological filters -- Vermifiltration -- Rotating biological contractors -- Phytoremediation -- Microbial fuel cells -- 4.1.3. Tertiary treatment -- 4.2. Advanced wastewater treatment methods -- 4.2.1. Membrane filtration -- 4.2.2. Advanced oxidation processes -- 4.2.3. UV irradiation -- 4.2.4. Other advanced methods -- 4.3. Commercialized wastewater treatments -- 5. Future perspectives -- References -- Chapter 2: UV-vis spectrophotometry for environmental and industrial analysis -- 1. Introduction -- 2. The electromagnetic spectrum -- 2.1. Electronic photophysical process -- 3. Limitations of Beer-Lambert Law -- 4. Importance of UV-vis spectroscopy for analysis -- 4.1. Quantitative analysis -- 4.2. Qualitative analysis -- 4.3. UV-vis spectrophotometry for environmental analysis -- 5. Water analysis -- 6. Polymer analysis -- 7. Microcarbon analysis -- 8. Dye analysis. , 8.1. Measurement of change in coloration -- 8.2. Removal of metal salts -- 8.3. Regulations in environmental control -- 8.4. Wastewater fingerprinting -- 8.5. Colored ink -- 8.6. UV-vis spectrophotometry for industrial analysis -- 8.6.1. Presence of colorants -- 8.6.2. Removal of colorants -- 8.7. Presence of organic content -- 8.8. Presence of natural products -- 8.9. Petrochemical industry -- 8.10. Waste management -- 9. Conclusion -- References -- Chapter 3: Chemical oxygen demand and biochemical oxygen demand -- 1. Introduction -- 2. Redox chemistry in water -- 3. Oxygen demand [1, 2] -- 4. Biological oxygen demand -- 5. Analysis of biochemical oxygen demand -- 5.1. Standard method -- 5.1.1. Winkler's method [6] -- 5.2. Technological advancement in standard methods -- 5.3. BOD methods for rapid determination of results -- 6. Chemical oxygen demand (COD) -- 6.1. Chemical reactions involved in COD determination [16] -- 6.2. Modification of conventional COD method -- 6.3. Mercury free methods -- 6.4. Electrochemical and photocatalytic methods (lesser chemical use) -- 7. Conclusion -- References -- Chapter 4: Soil and sediment analysis -- 1. Introduction -- 2. Methods for analysis of organic compounds -- 2.1. Pharmaceuticals -- 2.2. Phenols-alkylphenols and bisphenol A -- 2.3. Polycyclic aromatic hydrocarbons -- 2.4. Phthalates -- 2.5. Organometallic and organometalloid compounds -- 3. Microplastics -- 4. Quality assurance -- Funding -- References -- Chapter 5: Liquid chromatography-mass spectrometry techniques for environmental analysis -- 1. Introduction -- 2. Advances in extraction techniques of environmental samples for LC-MS -- 2.1. Microextraction techniques -- 2.2. Extraction techniques involving nanomaterials -- 2.3. Extraction techniques involving ionic liquids -- 3. Advances in liquid chromatography instrumentation. , 4. Advances in mass spectrometry detection -- 5. Applications of LC/MS for environmental analysis -- 6. Conclusions -- References -- Chapter 6: Green analytical chemistry for food industries -- 1. Introduction -- 2. Analytical detection -- 2.1. Qualitative methods -- 2.2. Quantitative methods -- 3. Emerging extraction technologies -- 3.1. Supercritical fluid extraction -- 3.2. Pressurized liquid extraction -- 3.3. Microwave-assisted extraction -- 3.4. Ultrasound-assisted extraction -- 4. Miniaturization of online emerging extraction techniques with analytical detection: Current trends in the use of SFE a ... -- 4.1. Sample preparation: Extraction vessel packaging -- 4.2. Extraction mode -- 4.2.1. Selection of the mobile phase -- 4.3. Separation and detection of analytes -- 5. Conclusion -- References -- Chapter 7: Immunoassays applications -- 1. Introduction -- 2. Conventional vs microscale immunoassay sensors -- 3. Substrates -- 3.1. Silicon -- 3.2. Glass -- 3.3. Polymers -- 3.4. Paper -- 3.5. Hybrid -- 4. Fluid transport mechanisms -- 4.1. Active -- 4.2. Passive -- 5. Detection methodologies -- 5.1. Colorimetric -- 5.2. Fluorescence -- 5.3. Surface plasmon resonance -- 5.4. Electrochemical -- 5.5. Mechanical -- 6. Conclusions and outlook -- References -- Chapter 8: High-performance liquid chromatographic techniques for determination of organophosphate pesticides in complex matr -- 1. Introduction -- 2. Environmental fate of pesticides -- 3. Analytical methods used for pesticides determination -- 4. High-performance liquid chromatography -- 4.1. Types of HPLC -- 4.1.1. Normal-phase HPLC -- 4.1.2. Reverse-phase HPLC -- 4.2. HPLC column -- 4.3. Mode of elution -- 4.3.1. Isocratic HPLC -- 4.3.2. Gradient HPLC -- 4.4. Detectors used for the analysis of organophosphate pesticides -- 5. Sample preparation for HPLC analysis of organophosphate pesticides. , 6. Detection and quantification of organophosphate pesticides from complex matrices using high-performance liquid chromat ... -- References -- Chapter 9: Application of the GC/MS technique in environmental analytics: Case of the essential oils -- 1. Introduction -- 2. GC/MS as a modern technique for analysis of essential oils -- 3. Practical application of the polar column in the analysis of essential oils -- 4. Conclusion -- References -- Chapter 10: Remote sensing for environmental analysis: Basic concepts and setup -- 1. Introduction -- 2. Practical examples -- 2.1. Improving environmental assessments through remote sensing -- 3. Key concepts to/in remote sensing -- 4. Historical background of remote sensing -- 4.1. Historical beginning -- 4.2. Remote sensing to environment applications -- 4.2.1. Hyperspectral imaging -- 4.2.2. Field spectrometry -- 4.2.3. Light detection and ranging (LiDAR) -- 5. Remote sensing sensors -- 5.1. Imaging sensors -- 5.2. Non-imaging sensors -- 6. Quality assurance and quality control (QA/QC) in environmental monitoring by remote sensing -- 7. Perspectives and conclusion -- References -- Chapter 11: Materials science and lab-on-a-chip for environmental and industrial analysis -- 1. Introduction -- 2. Lab-on-a-chip concept and components -- 3. Materials science on LOC technology -- 4. Environmental analysis and pollutant monitoring -- 5. Autonomous LOC prototype -- 6. Challenges and future prospects of LOC technology -- 7. Conclusion -- References -- Chapter 12: Destructive and nondestructive techniques of analyses of biofuel characterization and thermal valorization -- 1. Introduction -- 2. Materials preparation -- 2.1. Thermal densification processes -- 2.2. Mechanical densification processes -- 3. Destructive analyses for materials characterization -- 3.1. Generalities on destructive methods. , 3.2. Destructive methods in solid biofuel characterization -- 3.2.1. Thermogravimetry analysis (ATG) -- 3.2.2. High heating value determination -- 3.2.3. Ultimate analysis -- 4. Nondestructive methods for material characterization -- 4.1. Generalities -- 4.2. Nondestructive methods in solid biofuel characterization -- 4.2.1. Inductively coupled plasma atomic emission spectroscopy technique -- 4.2.2. Gaseous emission analysis using TESTO equipment -- 4.2.3. Particulate matter (PM) measurements -- 4.2.4. Bottom ash characterization and measurements -- References -- Chapter 13: Application of nanoparticles as a chemical sensor for analysis of environmental samples -- 1. Introduction -- 2. Synthesis of nanoparticles (NPs) -- 2.1. Platinum nanoparticles (PtNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Silver nanoparticles (AgNPs) -- 2.4. Copper nanoparticles (CuNPs) -- 2.5. Silica nanoparticles (SiNPs) -- 2.6. Magnetic nanoparticles (MNPs) -- 2.7. Carbon nanotubes (CNTs) -- 2.8. Graphene quantum dots (GQDs) -- 3. Characterization of nanoparticles -- 4. Properties of nanoparticles -- 4.1. Surface plasmon resonance (SPR) and color of NPs -- 4.2. Surface area -- 4.3. Magnetic properties -- 4.4. Electronic properties -- 5. Different class of chemical substances -- 5.1. Heavy metals -- 5.1.1. Essential metals -- 5.1.2. Toxic metals -- 5.2. Pesticides and fungicides -- 5.3. Aromatic and VOC's compounds -- 5.4. Surfactants -- 5.5. Other chemical substances -- 6. Analytical techniques for detection of chemical substance in environmental samples -- 6.1. Colorimetric sensing -- 6.2. Fluorescence sensing -- 6.3. Electrochemical sensing -- 6.4. Surface-enhanced Raman spectroscopic (SERS) sensing -- 7. Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...