GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Earthworms. ; Organic wastes. ; Vermicomposting. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (400 pages)
    Edition: 1st ed.
    ISBN: 9780443160516
    Series Statement: Waste and the Environment: Underlying Burdens and Management Strategies Series
    DDC: 363.7288
    Language: English
    Note: Front Cover -- EARTHWORM TECHNOLOGY IN ORGANIC WASTE MANAGEMENT -- EARTHWORM TECHNOLOGY IN ORGANIC WASTE MANAGEMENT -- Copyright -- Contents -- Contributors -- About the editors -- 1 - Earthworm-associated bacterial community and its role in organic waste decomposition -- 1. Introduction -- 2. Earthworms -- 3. Pollutant degradation mechanisms in vermicomposting -- 4. Bacterial diversity in the alimentary canal -- 5. Vermicast -- 5.1 Physical properties -- 5.2 Microbial properties -- 6. Vermiwash -- 7. Molecular techniques to detect earthworm gut microbes -- 8. Conclusion -- Acknowledgment -- References -- 2 - How do earthworms affect the microbial community during vermicomposting for organic waste recycling? -- 1. Introduction -- 2. Earthworm-microorganism interactions: Selectivity and diet -- 2.1 Bacteria -- 2.2 Fungi -- 2.3 Protozoa -- 3. Microbial abundance and diversity changes during vermicomposting -- 4. Microbial structural changes during vermicomposting -- 5. Microbial functional changes during vermicomposting -- 6. Substate effects on bacterial community during vermicomposting -- 7. Physicochemical properties affecting microbial changes during vermicomposting -- 8. Conclusion -- References -- 3 - Exploring the transfer and transformation of Polycyclic Aromatic Hydrocarbons in vermifiltration for domestic w ... -- 1. Introduction -- 2. Materials and methods -- 2.1 Experimental setup and operation -- 2.2 Chemical analysis and sludge yield coefficient calculation -- 2.3 Sample pretreatment and extraction -- 2.4 Sequential solvent extraction of polycyclic aromatic hydrocarbons -- 2.5 GC/MS analysis -- 2.6 FT-IR spectrum analysis -- 2.7 Three-dimensional fluorescence analyses for water-extractable organic matter -- 2.8 Data analysis -- 3. Results and discussion -- 3.1 Determination of 16 EPAs originating in sewage. , 3.2 Total removal performance of 16 PAHs by vermifiltration -- 3.3 Transferring of polycyclic aromatic hydrocarbons during vermifiltration treatment -- 3.4 Insights into polycyclic aromatic hydrocarbon removal based on molecular weight -- 3.5 Stabilization of polycyclic aromatic hydrocarbons in waste sludge -- 4. Conclusions -- Acknowledgments -- References -- 4 - Vermiremediation of organic wastes: vermicompost as a powerful plant growth promoter -- 1. Introduction -- 2. Vermicompost and its production -- 2.1 Factors influencing vermicomposting -- 2.1.1 pH -- 2.1.2 Moisture -- 2.1.3 C:N ratio -- 2.1.4 Temperature -- 2.2 Microbial community in vermicomposting -- 3. Vermicompost as a plant growth promoter -- 3.1 Stimulation of plant growth using vermicompost infused with beneficial microbes -- 3.2 Stimulation of plant growth by humic substances -- 4. Vermicompost as a plant disease suppression and pest control -- 5. Conclusions and future perspectives -- References -- Further reading -- 5 - Vermiremediation of plant agro waste to recover residual nutrients and improve crop productivity -- 1. Introduction -- 2. Vermiremediation technology -- 2.1 Basic process -- 2.1.1 Vermiaccumulation and vermiextraction -- 2.1.2 Vermitransformation -- 2.1.3 Drilodegradation -- 2.2 Vermiremediation for a cleaner environment and sustainable agriculture (nutrient amendment and degradation of toxins throug ... -- 3. Activity of suitable earthworm species and their associated microbes in composting and remediation -- 3.1 Earthworm species (Perionyx ceylanensis, Metaphire posthuma, Perionyx excavatus, Polypheretima elongata, Eudrilus eugeniae, ... -- 3.2 Structural and functional profiling of microbial diversity in the compost -- 4. Vermiremediation of different plant agro waste -- 4.1 Green manure amended pressmud -- 4.2 Patchouli bagasse mixed with cow dung. , 4.3 Jute mill waste -- 4.4 Lantana camara biomass -- 4.5 Vegetable waste and tree leaves -- 4.6 Pineapple waste -- 4.7 Waste biomass of medicinal herbs mixed with cow dung -- 4.8 Coir pith -- 4.9 Spent mushroom substrate combined with agro-residues -- 4.10 Leafy waste of cauliflower and cabbage -- 4.11 Distillation waste of Citronella plant -- 4.12 Lignocellulosic green waste of Saccharum spontaenum -- 4.13 Cassava peel waste -- 4.14 Banana crop waste -- 4.15 Sugarcane trash -- 4.16 Wetland plant waste -- 4.17 Crop residues -- 4.18 Coffee pulp -- 4.19 Oil palm empty fruit bunch -- 4.20 Water hyacinth and Salvinia sp -- 5. Different properties of plant agro waste compost -- 5.1 Biocidal properties of plant compost -- 5.1.1 Bacterial pathogen inhibition by Lantana compost -- 5.1.2 Tea-based compost inhibits the growth of Rhizoctonia solani in potato plants -- 5.2 Vermicompost's impact on various crop yields -- 6. Conclusion -- Acknowledgments -- References -- Further reading -- 6 - Biochemical alterations of vermicompost produced from Eichhornia crassipes (water hyacinth) and cattle dung -- 1. Introduction -- 2. Materials and methods -- 2.1 Work site -- 2.2 Setting up units -- 2.3 Data collection and analyses -- 3. Results and discussion -- 3.1 Electrical conductivity -- 3.2 pH -- 3.3 Organic carbon -- 3.4 Nitrogen -- 3.5 Phosphate -- 3.6 Potassium -- 3.7 Calcium -- 3.8 Magnesium -- 3.9 Economic analysis -- 4. Conclusion -- References -- 7 - Use of vermicompost and vermiwash for the growth and production of tomatoes (Lycopersicon esculentum Mill.): A ... -- 1. Introduction -- 1.1 Vermicompost -- 1.2 Vermiwash -- 1.3 Soil properties and impact of vermicompost and vermiwash -- 1.4 Impact of vermicompost and vermiwash on plant growth parameters and productivity -- 1.5 Cultivation of tomato (Lycopersicon esculentum Mill.) -- 2. Materials and methods. , 2.1 Vermiwash production -- 2.1.1 Earthworm collection -- 2.1.2 Establishment of vermiwash units -- 2.1.3 Experimental design -- 2.1.4 Observation and measurements -- 2.1.5 Physicochemical analysis -- 2.2 Crop cultivation (tomatoes) -- 2.2.1 Experimental design -- 2.2.2 Sowing to transplanting -- 2.2.3 Fertilization -- 2.2.4 Data collection -- 3. Results and discussion -- 3.1 Vermicompost: physicochemical properties -- 3.2 Vermiwash: physicochemical properties -- 3.3 Cultivation of tomato plants -- 3.3.1 Climatic conditions -- 3.4 Soil: physicochemical properties -- 3.5 Greenhouse experiment -- 3.5.1 Plant height -- 3.5.2 Stem thickness -- 3.5.3 Biomass and root length -- 3.5.4 Production -- 3.6 Field trials -- 3.6.1 Plant height -- 3.6.2 Stem thickness -- 3.7 Biomass and root length -- 3.7.1 Production -- 4. Overall discussion -- 5. Conclusion -- References -- 8 - Earthworm mediated amelioration of heavy metals from solid organic waste: an ecotechnological approach toward v ... -- 1. Introduction -- 2. Sources of heavy metals in organic waste -- 2.1 Agricultural sources -- 2.1.1 Fertilizer -- 2.1.2 Pesticides -- 2.2 Biosolids -- 2.3 Industrial sources -- 3. Different methods applied for heavy metal removal from solid organic waste: a review of phytoremediation -- 3.1 Phytoextraction -- 3.2 Phytostabilization/phytoimmobilization -- 3.3 Phytovolatilization -- 3.4 Phytodegradation -- 3.5 Rhizodegradation -- 4. Role of vermitechnology in reduction of heavy metal load: a case study using paper mill wastes -- 5. Role of microbes in remediation of heavy metals -- 6. Mechanisms involved in combating heavy metal stress in earthworms -- 7. Conclusion -- References -- Further reading -- 9 - Vermicomposting as a tool for removal of heavy metal contaminants from soil and water environment -- 1. Introduction -- 2. Vermicomposting process and raw materials used. , 2.1 Composting -- 2.2 Harvesting of the product -- 3. Importance of vermicomposting -- 4. Vermicomposting for removal of metal ions from- -- 4.1 Detoxification of industrial wastes/sludges using earthworms -- 4.2 Removal of metals by vermicomposting from municipal solid waste -- 4.3 Vermicomposting to remove metal ions from polluted soil -- 4.4 Vermicomposting for wastewater sludge treatment -- 5. Vermicomposting for breaking down of heavy metal in organic pollutants -- 5.1 Immobilization -- 5.2 Reduction -- 5.3 Volatilization -- 5.4 Modification of the rhizosphere -- 6. Safe disposal of metal-enriched compost -- 6.1 Vermiaccumulation -- 6.2 Vermitransformation -- 6.3 Vermidegradation -- 7. Strategies for improving vermiremediation -- 8. Precaution to be taken during vermiremediation -- 9. Conclusions -- References -- 10 - Earthworms and microplastics: Transport from sewage sludge to soil, antibiotic-resistant genes, and soil remed ... -- 1. Introduction -- 1.1 Microplastics in sewage sludge and soil -- 1.2 Presence of antibiotic resistance genes in soil -- 1.3 Earthworms as targets of exposure to contamination and as tools for soil remediation -- 2. Microplastics and antibiotic resistance genes -- 2.1 Co-transport from sewage sludge to and within the soil -- 2.2 Effects on soil systems -- 2.2.1 Effects on earthworms and other soil invertebrates -- 2.2.2 Effects on plants -- 2.2.3 Effects on the soil microbiome -- 3. Impact of earthworms on microplastics and antibiotic resistance -- 3.1 Earthworm-mediated microplastic degradation -- 3.2 Impact of vermicomposting on antibiotic resistance genes -- 4. Discussion -- 5. Conclusions and perspectives -- Acknowledgments -- References -- 11 - Instrumental characterization of matured vermicompost produced from organic waste -- 1. Introduction -- 2. Characteristic of mature vermicompost: a brief overview. , 3. Traditional methods for understanding vermicompost maturity.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Watershed management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (356 pages)
    Edition: 1st ed.
    ISBN: 9789811940705
    DDC: 551.48
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...