GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic books.  (2)
Document type
Keywords
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Coastal zone management-Indonesia. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (484 pages)
    Edition: 1st ed.
    ISBN: 9780128150511
    DDC: 577.5109598
    Language: English
    Note: Front Cover -- Science for the Protection of Indonesian Coastal Ecosystems (SPICE) -- Science for the Protection of Indonesian Coastal Ecosystems (SPICE) -- Copyright -- Contents -- Contributors -- Reviewers -- Foreword -- 1 - Introduction-Science for the Protection of Indonesian Coastal Ecosystems (SPICE) -- 1.1 Rationale -- 1.2 Development and implementation of the research and education program SPICE -- 1.3 Research, education, and outreach activities -- 1.4 Summary and synthesis of SPICE results -- Acknowledgments -- References -- 2 - Physical environment of the Indonesian Seas with focus on the western region -- 2.1 Introduction -- 2.2 The marine circulation -- 2.2.1 The global context -- 2.2.2 The regional circulation -- 2.2.3 Tides -- 2.3 Seasonal variability and long-term changes -- 2.3.1 Seasonality of circulation -- 2.3.2 Seasonality of temperature and salinity -- 2.3.3 Long-term development of sea surface temperature and sea surface salinity -- 2.4 Water residence times -- 2.5 Sources and sinks of freshwater -- 2.6 Remote sensing methods applied in coastal process studies -- 2.6.1 Available satellite data -- 2.6.2 Ocean color and its variation in Indonesian coastal waters -- 2.6.3 Satellite-based studies of phytoplankton and coastal processes -- 2.6.3.1 Distribution of phytoplankton -- 2.6.3.2 Coastal discharge and influence of tidal and monsoon phases -- 2.6.3.3 Climatological aspects -- Acknowledgments -- References -- 3 - Human interventions in rivers and estuaries of Java and Sumatra -- 3.1 Introduction -- 3.2 Drivers of environmental change affecting river fluxes -- 3.3 Natural factors, human interventions, and extreme events controlling river fluxes -- 3.3.1 The Brantas River, Java, as an example of high suspended matter rivers -- 3.3.1.1 Variations in sources, composition, and fate of nutrients. , 3.3.1.2 Variations in sources, composition, and fate of suspended sediments and particulate organic matter -- 3.3.1.3 Effects on phytoplankton abundance and community composition -- 3.3.1.4 Effects on the dissolved oxygen regime of the lower Brantas -- 3.3.2 The Siak River, Sumatra, as an example of blackwater rivers -- 3.3.2.1 Variations in dissolved organic carbon and dissolved oxygen -- 3.3.2.2 Sources and fate of nutrients -- 3.4 Governance and management programs -- Acknowledgments -- References -- 4 - Carbon cycle in tropical peatlands and coastal seas -- 4.1 Introduction -- 4.2 Background information -- 4.2.1 Peat -- 4.2.2 Peatland types -- 4.2.3 Vegetation and biodiversity -- 4.2.4 Peatland distribution and carbon storage -- 4.3 Indonesian peatlands -- 4.3.1 History of Indonesian peat swamps -- 4.3.2 Peat properties -- 4.3.3 Peat carbon accumulation -- 4.3.4 Land use and cover changes in Indonesia -- 4.3.5 The hydrological cycle of Indonesian peatlands -- 4.4 Peat carbon losses -- 4.4.1 CO2 emissions caused by peat and forest fires -- 4.4.2 CO2 emissions caused by peat soil oxidations -- 4.4.3 Off-site CO2 emission -- 4.5 Land-ocean continuum -- 4.5.1 SPICE study area -- 4.5.2 Dissolved organic carbon -- 4.5.3 Dissolved organic carbon yields -- 4.5.4 CO2 emission from rivers -- 4.5.5 Dissolved inorganic carbon yields -- 4.5.6 Leaching and erosion -- 4.5.7 Priming -- 4.6 Estuaries and the ocean -- 4.6.1 Dissolved organic carbon -- 4.6.1.1 The microbial organic carbon pump in the ocean -- 4.6.1.2 Dissolved organic carbon discharges into the ocean -- 4.6.1.3 The fate of dissolved organic carbon in the ocean -- 4.6.2 CO2 emissions from the coastal ocean -- 4.6.3 Organic carbon burial -- 4.6.4 The invisible carbon footprint -- 4.6.5 The marine peat carbon budget -- 4.6.6 Emission factors -- 4.7 Ecosystem CO2 emissions. , 4.7.1 Net on-site ecosystem CO2 exchange -- 4.7.2 CO2 emission from pristine peat swamps -- 4.7.3 CO2 emission from disturbed peatlands -- 4.8 Evaluation of CO2 emissions -- 4.8.1 Climate response to cumulative emissions of CO2 -- 4.8.2 CO2 reduction potential -- 4.8.3 CO2 emissions and land losses -- 4.8.4 Climate pledges and gaps -- 4.9 Socioeconomic implications -- 4.9.1 REDD+ -- 4.9.2 SPICE field experiments -- 4.10 Outlook -- References -- 5 - Coral reef social-ecological systems under pressure in Southern Sulawesi -- 5.1 Introduction-coral reefs in Indonesia and the Spermonde Archipelago -- 5.2 Functioning of coral reefs -- 5.2.1 Water quality and biogeochemical processes -- 5.2.2 Benthic coral reef community dynamics of Spermonde Archipelago -- 5.2.3 Bacterial communities and biofilms -- 5.2.4 Coral reef recruitment processes -- 5.2.5 Coral physiology -- 5.2.6 Relationships between benthic and fish communities -- 5.2.7 Consequences of disturbances for coral reef functioning -- 5.3 Genetic connectivity of reefs in the Coral Triangle region -- 5.3.1 Large-scale connectivity across the Coral Triangle region -- 5.3.2 Small-scale connectivity in the Spermonde Archipelago -- 5.3.3 Self-recruitment at the islands of Barrang Lompo and Samalona -- 5.3.4 Application of connectivity data in marine-protected area network design -- 5.4 Social systems associated with the use of coral-based resources and reef-specific challenges -- 5.4.1 Participatory assessment of Spermonde's coral reef fisheries -- 5.4.2 Investigating marine social-ecological feedbacks and dynamics -- 5.4.3 Reef-related livelihoods and implications for the present and future health of fishers and reefs -- 5.4.4 Changing target species, perceptions of reef resources, and implications for food security. , 5.4.5 Conclusions for the management of coral reef resources in the Spermonde Archipelago -- 5.5 Modeling to support the management of reef systems -- 5.5.1 Simulating the impact of fisheries on coral reef dynamics -- 5.5.2 A model on gear choices of fishermen -- 5.5.3 Spatial patterns of fishing ground distribution -- 5.6 Summary and outlook -- Acknowledgments -- References -- Appendix A5 -- 6 - Ecology of seagrass beds in Sulawesi-Multifunctional key habitats at the risk of destruction -- 6.1 General introduction to tropical Southeast Asian seagrass meadows -- 6.1.1 High biodiversity of seagrasses in the coral triangle of the tropical Indo-West Pacific -- 6.1.2 Introduction to the Spermonde Archipelago and its seagrasses and mangroves -- 6.2 The current distribution of seagrasses in the Spermonde Archipelago -- 6.2.1 Area estimates and seagrass mapping -- 6.2.2 The structure of tropical seagrass bed systems -- 6.3 Seagrass ecology -- 6.3.1 The historic loss of megaherbivores and today's important role of burrowing shrimp -- 6.3.2 Macrobenthic communities -- 6.3.3 The food web and the trophic pyramid in tropical seagrass beds -- 6.3.4 The function of seagrass meadows as water filters and buffers for land runoff -- 6.3.5 Carbon storage -- 6.3.6 Seagrass beds as carbon sinks -- 6.3.7 Trophic transfers from seagrass meadows to nearby ecosystems -- 6.4 Tropical seagrass beds as key habitat for fish species -- 6.4.1 Tropical seagrasses and their associated fish communities -- 6.4.2 The seagrass canopy as a driver of fish communities -- 6.4.3 Differences in fish habitat utilization across seagrass meadows with distinct canopy structures -- 6.5 Human-seagrass interactions -- 6.5.1 Ecological value and ecosystem services -- 6.5.2 Fisheries on fish and invertebrates in seagrass beds -- 6.5.3 Seaweed farms -- 6.5.4 Human-made infrastructure. , 6.5.5 Current threats -- 6.6 Conclusions and outlook -- Acknowledgments -- References -- 7 - Mangrove ecosystems under threat in Indonesia: the Segara Anakan Lagoon, Java, and other examples -- 7.1 Introduction -- 7.2 The study areas -- 7.3 Environmental setting and natural resource use -- 7.3.1 The physical setting -- 7.3.2 Water quality, biogeochemistry, and pollution -- 7.3.3 Carbon sources and storage -- 7.3.4 Flora and fauna -- 7.3.5 Population and natural resource use in the Segara Anakan region -- 7.4 Environmental change in the Segara Anakan Lagoon region: causes, drivers, and impacts -- 7.4.1 Decline of marine species and fisheries -- 7.4.2 Sedimentation and its causes -- 7.4.3 Reclamation of land and conflicts over new land -- 7.5 Threats to mangrove forests and their ecosystem services in Indonesia -- 7.6 Management programs -- Acknowledgments -- References -- 8 - Impact of megacities on the pollution of coastal areas-the case example Jakarta Bay -- 8.1 Introduction -- 8.2 Hydrological system and nutrient dispersion -- 8.3 Organic and inorganic pollution in Jakarta Bay -- 8.3.1 Types, quantity, and distribution of pollutants -- 8.3.1.1 Trace hazardous elements -- 8.3.1.2 Organic pollutants -- 8.3.2 Characterizing emission sources -- 8.3.2.1 Source apportionment of trace elements -- 8.3.2.2 The insect repellent N,N-diethyl-m-toluamide as tracer for municipal sewage and the implications for coastal management -- 8.3.3 Industrial emissions in the Greater Jakarta area and their role for the contamination of the Jakarta Bay ecosystem -- 8.3.4 The flushing-out phenomenon -- 8.3.5 Accumulation in biota -- 8.4 Water quality and biological responses -- 8.4.1 Water pollution in Jakarta Bay and the Thousand Islands -- 8.4.2 Biological responses to anthropogenic stressors -- 8.4.3 Impacts on the physiology of key coral reef organisms. , 8.4.4 Impacts on reef composition.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Marine bacteria. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (208 pages)
    Edition: 1st ed.
    ISBN: 9780128151662
    DDC: 579.177
    Language: English
    Note: Front Cover -- Microbial Communities in Coastal Sediments -- Copyright Page -- Contents -- Introduction -- 1 Source and composition of organic matter and its role in designing sediment microbial communities -- 1.1 Introduction -- 1.2 Organic matter in coastal sediments -- 1.2.1 Types of sedimentary organic matter -- 1.2.1.1 Total organic matter/total organic carbon -- 1.2.1.2 Particulate organic matter/particulate organic carbon -- 1.2.1.3 Dissolved organic matter/dissolved organic carbon -- 1.2.1.4 Dissolved inorganic carbon -- 1.2.1.5 Labile organic matter -- 1.2.1.6 Refractory organic matter -- 1.2.1.7 Microbial biomass carbon -- 1.2.1.8 Biopolymeric carbon -- 1.3 Source of organic matter: autochthonous and allochthonous -- 1.3.1 Autochthonous organic matter -- 1.3.2 Allochthonous organic matter -- 1.3.2.1 Transport by rivers -- 1.3.2.2 Agricultural and urban runoff -- 1.4 Quality of organic matter in sediments -- 1.4.1 Organic matter quality indices -- 1.5 Microbial degradation of organic matter -- 1.6 Role of organic matter in designing sediment microbial communities -- 1.7 Microbial diversity and ecology in coastal sediments -- 1.7.1 Diversity of bacterial communities -- 1.7.1.1 Hydrolytic bacteria -- 1.7.1.2 Denitrifying bacteria -- 1.7.1.3 Iron and manganese reducers -- 1.7.1.4 Sulfate reducers -- 1.8 Diversity of archaeal communities -- 1.8.1 Methanogenic archaea -- References -- 2 Sources, types, and effects of nutrients (N and P) in coastal sediments -- 2.1 Introduction -- 2.2 Nutrient sources of coastal ecosystems -- 2.2.1 Agriculture -- 2.2.2 Animal husbandry and marine aquaculture -- 2.2.3 Fossil fuel burning and atmospheric deposition -- 2.3 Nutrient enrichment: forms and types -- 2.4 Effect of hypernutrification -- 2.4.1 Eutrophication and consequences for ecology -- 2.4.2 Hypoxia and anoxia in water and sediment. , 2.4.3 Eutrophication-induced changes in sediment microbial communities -- References -- 3 Environmental variables and factors regulating microbial structure and functions -- 3.1 Introduction -- 3.2 Spatial and temporal heterogeneity -- 3.3 Geological factors -- 3.3.1 Sediment granulometry -- 3.3.2 Sediment depth -- 3.3.2.1 Shift in substrate availability with depth -- 3.3.2.2 Decrease in lability of organic matter with depth -- 3.4 Hydrological factors -- 3.5 Physicochemical factors -- 3.5.1 pH -- 3.5.2 Salinity -- 3.5.3 Pore water chemistry/presence of nutrients or chemicals -- 3.5.4 Redox potential -- 3.5.5 Changes in availability of electron acceptors -- 3.5.5.1 Aerobic respiration -- 3.5.5.2 Nitrate reduction -- 3.5.5.3 Mn and Fe reduction -- 3.5.5.4 Sulfate reduction -- 3.5.5.5 Methanogenesis -- 3.5.6 Role of electron donors -- 3.6 Biological factors -- 3.6.1 Trophic interactions -- 3.6.1.1 Syntrophy and interspecies hydrogen transfer -- 3.6.2 Evolutionary mechanisms and diversification -- 3.6.3 Ecological coherence -- 3.6.4 Microbial characteristics -- 3.6.5 Bioturbation and ventilation -- 3.6.6 Plant interactions -- 3.7 Nutritional factors -- 3.8 Natural and anthropogenic disturbances -- 3.9 Presence of contaminants/toxic substances -- References -- 4 Biogeocycling of nutrients (C, N, P, S, and Fe) and implications on greenhouse gas emissions -- 4.1 Introduction -- 4.2 Biogeocycling of nutrients -- 4.2.1 Carbon -- 4.2.2 Nitrogen -- 4.2.3 Sulfur -- 4.2.4 Manganese (Mn) and iron (Fe) -- 4.3 Greenhouse gas dynamics in coastal ecosystems -- 4.3.1 Carbon dioxide -- 4.3.2 Methane -- 4.3.3 Nitrous oxide -- References -- 5 Biodegradation and biotransformation of persistent organic pollutants by microbes in coastal sediments -- 5.1 Introduction -- 5.2 Why persistent organic pollutants? -- 5.3 Anaerobic degradation and pathways. , 5.3.1 Phenols and chlorinated phenols -- 5.3.2 3-Chlorobenzoate -- 5.3.3 Polycyclic aromatic hydrocarbons -- 5.3.4 Polychlorinated biphenyls -- 5.3.5 Polychlorinated dibenzo-p-dioxins and dibenzofurans -- 5.4 Anaerobic microorganisms involved -- 5.5 Limitations for anaerobic degradation: electron acceptors -- 5.6 Future prospects -- References -- 6 Assessment of microbial structure and functions in coastal sediments -- 6.1 Introduction -- 6.2 Culture-dependent methods: the "great plate count anomaly" -- 6.3 Molecular tools used to examine microbial diversity of coastal sediments -- 6.3.1 Gene amplification and sequencing of 16S rDNA -- 6.3.2 Fluorescence in situ hybridization -- 6.3.3 Terminal restriction fragment length polymorphism -- 6.3.4 Denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis -- 6.4 High-throughput sequencing technologies -- 6.4.1 Metagenomics: an approach based on small subunit ribosomal RNA -- 6.5 Functional diversity of coastal sediment microbes -- 6.5.1 Stable isotope probing -- 6.6 Microbial activity in coastal sediment: study of biogeochemical reaction rates in laboratory microcosms -- 6.7 Conclusion and future prospects -- References -- Appendix 1: Conclusions and future perspectives -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...