GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (2)
Publikationsart
Sprache
Erscheinungszeitraum
  • 1
    Schlagwort(e): Computer simulation. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (264 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319323428
    Serie: Springer Theses Series
    DDC: 333.91
    Sprache: Englisch
    Anmerkung: Intro -- Parts of this thesis have been published in the following journal articles: -- Supervisor's Foreword -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Objective, Task, and Significance -- 1.2 Current Status of Research and Technology in Related Fields -- 1.2.1 Current Status of Research on the Technology of Comprehensive Utilization of Water Resources -- 1.2.1.1 Current Status of Research Abroad -- 1.2.1.2 Current Status of Research in China -- 1.2.2 Current Status of the Theory and Technology of Water Resources Assessment -- 1.2.2.1 Assessment Methods of Water Resources -- 1.2.2.2 Review of Water Resources Assessment Method -- 1.2.3 Current Status of Research on Mine Seepage Theory and Numerical Simulation -- 1.2.3.1 Simulation of Groundwater Flow -- 1.2.3.2 Research on Special Variability of Hydrological Hydraulic Parameters -- 1.2.4 Current Status of Research on the Theory and Technology of Rational Allocation of Water Resources -- 1.2.4.1 Basic Concept -- 1.2.4.2 The Scientific Basis of the Rational Allocation Water Resources -- 1.2.4.3 Relation Between Rational Allocation and Supply-Demand Balance of Water Resources -- 1.2.4.4 The Major Tasks of the Rational Allocation of Water Resources -- 1.2.4.5 Principles and Objectives of Water Resources Allocation -- 1.2.4.6 Model for the Rational Allocation of Water Resources -- 1.2.5 Current Status of the Research on Water Resources Protection in Mining Areas -- 1.2.6 Application of New Technology in the Study of Hydrology and Water Resources -- 1.2.6.1 Comprehensive Application of "3S" System -- 1.2.6.2 Application of Computer Technology -- 1.2.6.3 Application of Geostatistics -- 1.2.6.4 Application of Multivariate Statistical Analysis -- 1.2.6.5 Application of Hydrochemistry and Environmental Isotope Technique -- 1.3 General Thinking, Content, and Technical Route of the Study. , 1.3.1 General Thinking -- 1.3.2 Major Content -- 1.3.3 Technical Route -- References -- 2 Analysis of Supply and Demand of Water Resources in the Study Area -- 2.1 Assessment of Surface Water Resources -- 2.1.1 Surface Water Bodies in the Study Area -- 2.1.2 Runoff Volume of Ulan Mulun River -- 2.1.3 Resources of Surface Water Bodies -- 2.1.4 Total Surface Water Resources -- 2.2 Assessment of Groundwater Resources -- 2.2.1 Influence of Different Precipitation on the Recharge of Groundwater Resources -- 2.2.1.1 Statistical Analysis of Meteorological Data in the Study Area -- 2.2.1.2 Numerical Model of Water Content Migration in Aeration Zone in the Study Area and Determination of Rainfall Infiltration Coefficient -- 2.2.2 Assessment of Regional Groundwater Resources -- 2.2.2.1 Scope of Balance Area -- 2.2.2.2 Selection of Balance Period -- 2.2.2.3 Calculation of Balance Terms -- 2.2.2.4 Balance Analysis and Assessment of Groundwater Resources -- 2.3 Total Water Resources -- 2.4 Current Status of Water Resources Development and Utilization -- 2.4.1 Current Status of Water Supply Engineering -- 2.4.1.1 Tap Water Supply Engineering -- 2.4.1.2 Reused Water Engineering -- 2.4.2 Current Status of Water Supply -- 2.4.3 Current Status of Water Consumption -- 2.4.4 Analysis of the Current Status of Supply-Demand Balance of Water Resources -- 2.5 Prediction of Future Water Demand -- 2.5.1 Water Demand Prediction Based on GM (1, 1) Model -- 2.5.1.1 Basis of Prediction -- 2.5.1.2 Gray System Theory -- 2.5.2 Prediction of Water Demand -- 2.5.3 Planning of Water Supply Engineering -- 2.5.4 Analysis of Future Water Supply and Demand Balance -- 2.5.4.1 Analysis on Future Water Supply and Demand Balance -- 2.5.4.2 Analysis on Industrial Reused Water Supply and Demand Balance -- 2.6 Prediction of Mine Inflow. , 2.6.1 Current Status of Mine Inflow in Different Mines of the Study Area -- 2.6.2 Current Status of Water Filling in Gob of Different Mines in the Study Area -- 2.6.3 Basis of Prediction -- 2.6.4 Prediction of Mine Water Inflow -- 2.7 Summary -- References -- 3 Groundwater System in the Study Area -- 3.1 Generalities of Groundwater System -- 3.1.1 Concept of Groundwater System -- 3.1.2 Characteristics of Groundwater System -- 3.1.2.1 Hierarchy of Groundwater System -- 3.1.2.2 Integrality and Unity of Groundwater System -- 3.1.3 Theoretic Basis for Water Resources Assessment of Groundwater System -- 3.2 Analysis of Groundwater System and Hydrogeological Conditions -- 3.2.1 Generalities of Aquifer System Conditions -- 3.2.1.1 Hydrogeological Characteristics of Shalawusu Formation -- 3.2.1.2 Hydrogeological Characteristics of the Burnt Rock -- 3.2.1.3 Hydrogeological Characteristics of the Flood Land and Terrace of Ulan Mulun River -- 3.2.2 Hydrogeological Characteristics of Major Water Source Sites -- 3.2.2.1 Division of Water Sources in the Study Area -- 3.2.2.2 Water Sources in Gongnieergaigou -- 3.2.2.3 Water Source in Kaokaolagou -- 3.2.2.4 Halagou Water Source -- 3.2.2.5 Liugengou Water Source -- 3.2.3 Division and Major Hydrogeological Characteristics of Ground Water System -- 3.2.3.1 Lateral Boundary -- 3.2.3.2 Vertical Boundary -- 3.2.3.3 Division of Groundwater System and Subsystem -- 3.3 Summary -- References -- 4 Simulation, Assessment, and Management of the Key Water Source Sites -- 4.1 Simulation of the Key Water Source Sites of Groundwater System -- 4.1.1 Generalization of Hydrogeological Conditions -- 4.1.2 Generalization of Mathematic Model -- 4.1.3 Definite Condition -- 4.1.3.1 Selection of Simulation Period -- 4.1.3.2 Initial Condition -- 4.1.3.3 Treatment of Source-Sink Terms of Model -- 4.1.4 Parameter Inversion. , 4.1.4.1 Zoning of Hydrogeological Parameters -- 4.1.4.2 Inversion of Hydrogeological Parameters -- 4.1.5 Results and Analysis of Running Model -- 4.2 Feasibility Assessment of Joint Extraction of Groundwater from Wells and Springs -- 4.2.1 Groundwater Management Model -- 4.2.1.1 Theoretical Basis -- 4.2.1.2 Response Matrix of Groundwater Level -- 4.2.2 Setup of the Optimized Management Model of Conjoint Groundwater Extraction from Wells and Springs -- 4.2.2.1 Planned Wells and Control Points -- 4.2.2.2 Determination of the Plan Period and the Time Interval of Management -- 4.2.2.3 Objective Function -- 4.2.2.4 Constraint Conditions -- 4.2.3 Resolving and Analysis of the Optimized Management Model of Conjoint Groundwater Extraction from Wells and Springs -- 4.2.3.1 Mathematic Model and Its Decomposition -- 4.2.3.2 Calculation of the Response Function and the Additional Water Level -- 4.2.3.3 Algorithm Implementation and Results -- 4.3 Summary -- References -- 5 Assessment of Coal Mining Impact on Water Resources -- 5.1 The Impact of Coal Mining on Water Resources Circulation -- 5.1.1 Change of the Transformation Relation Between Surface Water and Groundwater -- 5.1.2 Acceleration of the Infiltration Rate of Rainfall and Surface Water, Reduction of Evaporation -- 5.1.3 Mine Drainage Makes Water Circulation Complicated -- 5.2 Impact of Coal Mining on the Structure of Aquifer in Seam Roof -- 5.3 Impact of Coal Mining on Surface Water -- 5.3.1 Impact of Coal Mining on Surface Water System -- 5.3.2 Impact of Coal Mining on Surface Water Quality -- 5.4 Impact of Coal Mining on Groundwater -- 5.4.1 Relationship Between the Drop of Groundwater Level and Destruction of Overburden Rocks -- 5.4.2 Impact of Coal Mining on Water Level of the Major Aquifer -- 5.4.3 Impact of Coal Mining on Groundwater Flow Field -- 5.4.3.1 The Original Groundwater Flow Field. , 5.4.3.2 Variation of Groundwater Flow Field During Mining -- 5.4.4 Impact of Coal Mining on Groundwater Quality -- 5.5 Impact of Coal Mining on Water Resources Quantity -- 5.5.1 Impact of Coal Mining on the Total Water Resources -- 5.5.1.1 Groundwater Drawdown Induced by Coal Mining Has Reduced the Evaporation of the Shallow Groundwater -- 5.5.2 Groundwater Drawdown Induced by Coal Mining Reduced the Output of Springs -- 5.5.2.1 Groundwater Drawdown Induced by Coal Mining Increased the Capture of Water Resources from the Exterior Drainage Basin -- 5.5.3 Impact of Coal Mining on the Available Water Resources -- 5.5.3.1 Impact of Coal Mining on the Available Surface Water Resources -- 5.5.3.2 Impact of Coal Mining on the Available Groundwater Resources -- 5.6 Summary -- References -- 6 Study on MultiObjective Optional Allocation of Complex Water Resources System -- 6.1 Generalities of the MultiObjective Optimal Allocation Model of Water Resources -- 6.1.1 Mathematical Model -- 6.1.2 Decision Variables -- 6.1.3 Objective Function -- 6.1.3.1 Objective of Environmental Quality -- 6.1.3.2 Objective of System Operation -- 6.1.4 Constraint Conditions -- 6.1.4.1 Resources Constraint -- 6.1.4.2 Demand Constraint -- 6.2 Setup of the Optimal Allocation Model of Complex Water Resources System in the Study Area -- 6.2.1 Principle for Model Setup -- 6.2.2 Selection of Decision Variables -- 6.2.3 Setup of Objective Function and Objective Constraint -- 6.2.4 Determination of the Constraint Conditions -- 6.3 Solution Method of Model -- 6.4 Results and Analysis of Running Model -- 6.4.1 Analysis of Water Resources Optimization Results in Daliuta Shaft District -- 6.4.1.1 Analysis of Water Supply Sources and Output of Supplying Water in Different Level Years -- 6.4.1.2 Analysis of the Balance Between Supply and Demand of Water Resources in Different Level Years. , 6.4.1.3 Analysis of Water Supply Potential.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Mine water-Prevention. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (521 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030670597
    Serie: Professional Practice in Earth Sciences Series
    DDC: 622.5
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Water Hazards in Coal Mines and Their Classifications -- 1.1 Introduction -- 1.2 Water Inrush Conceptual Site Models for Coal Mines of China -- 1.2.1 Development of Water Inrush Conceptual Site Models -- 1.2.2 Benefits of Water Inrush Conceptual Site Models -- 1.3 Classification of Water Inrush for Coal Mines of China -- 1.3.1 Principles for Classification of Mine Water Inrush -- 1.3.2 Types of Mine Water Inrush -- 1.3.3 Characteristics of Mine Water Inrushes -- 1.4 Hydrogeological Classification for Mine Water Hazard Control -- 1.4.1 Criteria of Hydrogeological Classification -- 1.4.2 Hydrogeological Classification of Coal Mines in China -- 1.4.3 Hydrogeological Characteristics of Mines -- 1.5 Advances in Prevention and Control Technologies of Mine Water Hazards -- 1.5.1 Updated Mining Principles -- 1.5.2 Evolution of Water Inrush Coefficient -- 1.5.3 Supplemental Investigation and Water Inrush Prediction -- 1.5.4 Advanced Detection and Dewatering Technologies -- 1.5.5 Early Warning Technique -- 1.5.6 Innovated Grouting Technique -- References -- 2 Mine Water Inrush Mechanisms and Prediction Methods -- 2.1 Overview of Water Inrush Studies -- 2.2 Water Inrush Mechanisms in North China's Coalfields -- 2.2.1 Hydrogeological Background -- 2.2.2 Relationship Between Aquiclude Thickness and Groundwater Pressure -- 2.2.3 Impact of Mining Activities on Geologic Barrier -- 2.2.4 Laboratory Experiments on Failure of Geologic Barrier -- 2.2.5 Initial Conductive Zone in Geologic Barrier -- 2.2.6 In-Situ Hydrofracturing Tests -- 2.3 Water Inrush Mechanism Through Karst Collapse Columns -- 2.3.1 Karst Collapse Columns and Their Relationship with Mining -- 2.3.2 Hydrogeological Characteristics of Karst Collapse Columns -- 2.3.3 Water Inrushes Through Karst Collapse Columns -- 2.4 Prediction Methods. , 2.4.1 Water Inrush Coefficient Method -- 2.4.2 Vulnerability Index Method -- 2.4.3 Three-Map and Two-Prediction Method -- 2.4.4 Five-Map and Two-Coefficient Method -- References -- 3 Modeling of Groundwater Flow in Karst Aquifers for Mine Water Control -- 3.1 Inputs to Karst Hydrogeological Systems -- 3.1.1 Discharge-Storage Method -- 3.1.2 Recession-Curve-Displacement Method -- 3.1.3 Meteorological Model -- 3.2 Groundwater Flow in Karst Hydrogeological Systems -- 3.2.1 Groundwater Flow Patterns in Karst Aquifers -- 3.2.2 Influenced Flow Patterns -- 3.2.3 Confluent Flow in Karst Aquifers -- 3.2.4 Siphon Karst Flow -- 3.3 Water Budget Analyses -- 3.3.1 Discharge Hydrograph -- 3.3.2 Discharge Recession Analysis -- 3.3.3 Discharge Chemograph -- 3.3.4 Groundwater Level Hydrograph -- 3.4 Statistical and Stochastic Methods -- 3.4.1 Regression Analysis -- 3.4.2 Kernel Analysis -- 3.4.3 Threshold Autoregressive Analysis -- 3.5 Mixing-Cell Models -- 3.5.1 Discrete-State-Compartment Model -- 3.5.2 Water Tank Models -- 3.6 Physics-Based Models -- 3.6.1 Equivalent-Porous-Medium Models -- 3.6.2 Discrete-Fracture Models -- 3.6.3 Double-Continuum Models -- 3.6.4 Determination of Hydraulic Parameters at Respective Scales -- 3.7 Quantitative Analysis of Tracer Tests -- 3.7.1 Tracer-Breakthrough Curves -- 3.7.2 Estimation of Hydraulic Parameters of Karst Conduits -- 3.7.3 Evaluation of Dynamic Dispersion in Karst Aquifers -- 3.8 Application of Dual-Porosity Model to Groundwater Simulation in the Ordovician Limestone in Jiaozuo Coalfield, China -- 3.8.1 Introduction to Jiaozuo Coalfield -- 3.8.2 Karst Conduit Distribution -- 3.8.3 Calibration of the Dual-Porosity Model -- References -- 4 Prevention and Control of Mine Water Hazards from Underlying Aquifers. , 4.1 Water Prevention and Control Technology in Mining Lower Coal Seams Under Potentiometric Pressure in Xingtai Dongpang Mine -- 4.1.1 Mine Background -- 4.1.2 Application of Water Prevention and Control Technology to Mining Under Potentiometric Pressure -- 4.2 Grouting Technology in Thin-Bedded Limestone to Prevent Water Inrushes from Underlying Aquifers in Zhuzhuang Coal Mine of Huaibei Coalfield -- 4.2.1 Background -- 4.2.2 Large-Scale Advance Grouting Technology in Transforming Limestone into Water Barrier -- 4.3 Utilization of the Top of the Ordovician Limestone in the Sangshuping Mine of Hancheng and the Underground Grouting Transformation Technology -- 4.3.1 Mine Background -- 4.3.2 Utilization of Top of the Ordovician Limestone and Underground Grouting Transformation Technology -- 4.4 Emergency Mitigation Technology of Water Inrush Induced Mine Flooding in Luotuoshan Coal Mine in Wuhai Energy Co., Ltd. -- 4.4.1 Overview -- 4.4.2 Emergency Water-Plugging Technology in #16 Coal Seam Air Return Lane -- 4.4.3 Comprehensive Investigation Technology of Water Inrush Point -- 4.5 Characterization and Remediation of Karst Collapse Columns in Renlou Coal Mine, China -- 4.5.1 Mine Background -- 4.5.2 Water Source Discrimination by Temperature and Hardness Measurements -- 4.5.3 Geophysical Investigations -- 4.5.4 Borehole Exploration and Grouting -- 4.5.5 Summary -- 4.6 Design and Construction of Watertight Plugs in Permeable Karst Collapse Columns in Restoration of Flooded Dongpang Mine, China -- 4.6.1 Mine Background -- 4.6.2 Construction of the Watertight Plug -- 4.6.3 Completion Criteria of Grouting -- 4.6.4 Grout Intake Distribution -- 4.6.5 Evaluation of Plug Effectiveness -- 4.6.6 Summary -- 4.7 Utilization of Paleokarst Crust of Ordovician Limestone in Water Inrush Control in Sihe Coal Mine, Shanxi Province. , 4.7.1 Introduction to Paleokarst Crust -- 4.7.2 Characteristics of Paleokarst Crust at Sihe Mine -- 4.7.3 Hydrogeogical Properties of Fengfeng Formation -- 4.7.4 Thickness of Aquifuge in Fengfeng Formation -- 4.7.5 Summary -- 5 Prevention and Control of Mine Water Hazards from Overlying Aquifers -- 5.1 Water Control Technology for Overlying Thick-Bedded Sandstone Fissure Aquifer in Hujiahe Mine, Binchang, Shaanxi -- 5.1.1 Mine Background -- 5.1.2 Exploration and Prevention Techniques for Water Hazards Posed by the Overlying Thick Sandstone Fissure Aquifer -- 5.1.3 Exploration and Prevention Technologies of Water Hazards from Overlying Thick Sandstone Fissure Aquifers -- 5.2 Prevention and Control Technology for Water Disaster from Bed-Separation Voids of Overlying Formations in Hongliu Coal Mine, Ningdong Coalfield -- 5.2.1 Mine Background -- 5.2.2 Investigation and Mitigation of Bed-Separation Water Inrush -- 5.2.3 Summary of Bed-Separation Groundwater Control -- 5.3 Prevention Technology on Water and Sand Inrush in Halagou Coal Mine, Shendong Coalfield -- 5.3.1 Mine Background -- 5.3.2 Mechanism and Conditions of Water and Sand Inrush -- 5.3.3 Prevention and Control Technology of Water and Sand Inrush -- 6 Investigation and Prevention of Water Hazards from Old Mine Pools in Ordos -- 6.1 Background of Mining Area -- 6.2 Technical Approaches -- 6.3 Geophysical Methods -- 6.3.1 High-Density Electrical Resistivity Imaging -- 6.3.2 Transient Electromagnetic Method -- 6.3.3 Shallow Seismic Method -- 6.3.4 EH4 Magnetotelluric Method -- 6.3.5 Control-Source Audio Magnetotelluric Method -- 6.3.6 Magnetic Method -- 6.4 Achievements by Electrical and Magnetic Imaging -- 6.4.1 Geophysical Survey Layout -- 6.4.2 Results of Electrical Resistivity Imaging Survey -- 6.4.3 Results of Transient Electromagnetic Survey -- 6.4.4 Results of Magnetic Survey. , 6.5 Experience with Reconnaissance of Coal Mine Goafs in Ordos -- 6.5.1 Unified Organization and Implementation Led by Government -- 6.5.2 Reliance on Technical Institutions to Improve Reconnaissance Effectiveness -- 6.5.3 Active Cooperation of Coal Mine Enterprises -- 6.5.4 Concerted Efforts from All Parties -- 7 Technologies in Sealing Massive Karst Conduits in Restoration of a Flooded Open Pit Quarry in West Virginia, United States -- 7.1 Mine Background -- 7.2 Water Source and Pathway Investigations -- 7.3 Concept of Remediation Design -- 7.3.1 Selection of Cut off Methodology -- 7.3.2 Selection of Grouting Concepts -- 7.3.3 Evolution of the Remediation Program -- 7.4 Execution of Mitigation -- 7.4.1 Drilling -- 7.4.2 Grouting -- 7.5 Drilling and Grouting Quantities -- 7.6 Impact of Grouting Program on Quarry Inflow Characteristics -- 7.7 Summary -- References -- 8 Environmental Impact Assessment in Hongliulin Coal Mine -- 8.1 Mine Background Setting -- 8.1.1 Geographical Location -- 8.1.2 Mining History -- 8.1.3 Resources and Reserves -- 8.2 Geoenvironmental Background -- 8.2.1 Physical Geography -- 8.2.2 Topography -- 8.2.3 Stratum Lithology and Geological Structure -- 8.2.4 Aquifer and Aquiclude -- 8.2.5 Groundwater Flow, Recharge, and Discharge -- 8.2.6 Analysis of Groundwater Recharge Conditions in the Mine -- 8.2.7 Geotechnical Conditions -- 8.2.8 Characteristics of Coal Seam -- 8.2.9 Other Human Engineering Activities in the Mine and its Vicinity -- 8.3 Geoenvironmental Impact Assessment -- 8.3.1 Evaluation Scope and Level -- 8.3.2 Assessment of Background Conditions -- 8.3.3 Soil Erosion Intensity -- 8.3.4 Vegetation and Coverage -- 8.3.5 Summary -- 8.4 Predictive Geoenvironmental Assessment -- 8.4.1 Predictive Assessment of Geological Disasters -- 8.4.2 Predictive Assessment of Aquifers. , 8.4.3 Evaluation of Impact on Topography and Landscape.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...