GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (2)
  • 125-783A; 125-784A; Actinolite; Albite; Calcite; Chlorite; Clinopyroxene; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Epidote; Event label; Hornblende; Joides Resolution; Leg125; North Pacific Ocean; Ocean Drilling Program; ODP; Opaque minerals; Prehnite; Quartz; Sample code/label; Sphene; Zeolite  (1)
Schlagwörter
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Mass-wasting -- Congresses. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Submarine mass movements represent major offshore geohazards due to their destructive, tsunami-generating potential; dangers that will only increase as sea levels rise. This volume features the latest scientific research into their features and consequences.
    Materialart: Online-Ressource
    Seiten: 1 online resource (763 pages)
    Ausgabe: 1st ed.
    ISBN: 9789400721623
    Serie: Advances in Natural and Technological Hazards Research Series ; v.31
    Sprache: Englisch
    Anmerkung: Intro -- Submarine Mass Movements and Their Consequences -- Contents -- Contributors -- Chapter 1: Submarine Mass Movements and Their Consequences -- 1.1 Introduction -- 1.2 Part I: Physical Properties of Sediments and Slope Stability Assessment -- 1.3 Part II: Seafloor Geomorphology for Trigger Mechanisms and Landslide Dynamics -- 1.4 Part III: Role of Fluid Flow in Slope Instability -- 1.5 Part IV: Mechanics of Mass-Wasting in Subduction Margins -- 1.6 Part V: Post-failure Dynamics -- 1.7 Part VI: Landslide Generated Tsunamis -- 1.8 Part VII: Witnessing and Quasi-Witnessing of Slope Failures -- 1.9 Part VIII: Architecture of Mass Transport Deposits/Complexes -- 1.10 Part IX: Relevance of Natural Climate Change in Triggering Slope Failures -- 1.11 Future Perspectives -- References -- Part I: Physical Properties of Sediments and Slope Stability Assessment -- Chapter 2: Risk Assessment for Earthquake-Induced Submarine Slides -- 2.1 Introduction -- 2.2 Stability of Submarine Slopes Under Earthquake Loading -- 2.3 Factors Influencing Soil Strength Under Seismic Loading -- 2.3.1 Rapid Loss of Shear Strength and Liquefaction Phenomenon -- 2.3.2 Special Considerations for Clay Slopes Under Earthquake Loading -- 2.3.3 Effect of High-Frequency Cyclic Loading on Static Shear Strength -- 2.3.4 Effect of Cyclic Loading on Undrained Creep -- 2.4 Risk Assessment for Submarine Slides -- 2.4.1 Probabilistic Slope Stability Assessment -- 2.4.2 Estimation of Annual Probability of Slope Failure -- 2.4.3 Interpretation of Computed Static Failure Probability in a Bayesian Framework -- 2.5 Recommended Calculation Procedure -- 2.6 Discussion and Conclusion -- References -- Chapter 3: Shallow Landslides and Their Dynamics in Coastal and Deepwater Environments, Norway -- 3.1 Introduction -- 3.2 Geological Setting -- 3.3 Data and Methods. , 3.4 Results - From Geomorphology to Soil Properties and Stability -- 3.4.1 Coastal Environment - Sørfjorden (Finneidfjord) -- 3.4.2 Intermediate Water Depths - Vesterålen Margin -- 3.4.3 Deepwater Setting - Lofoten Margin -- 3.5 Discussion and Conclusions -- References -- Chapter 4: Physical Properties and Age of Continental Slope Sediments Dredged from the Eastern Australian Continental Margin - Implications for Timing of Slope Failure -- 4.1 Introduction -- 4.2 Study Area -- 4.3 Results -- 4.3.1 Dredged Materials - Sedimentology and Geomechanical Properties -- 4.3.2 Palaeontology/Dating -- 4.3.3 Geomechanical Modeling -- 4.4 Discussion and a Hypothesis -- References -- Chapter 5: Submarine Landslides on the Upper Southeast Australian Passive Continental Margin - Preliminary Findings -- 5.1 Introduction -- 5.1.1 Study Area -- 5.2 Data and Methods -- 5.2.1 Bathymetry and Slide Geometry -- 5.2.2 Sediment Properties -- 5.3 Results and Interpretation -- 5.3.1 Sediment Properties -- 5.3.2 14 C Radiocarbon Ages -- 5.4 Modeling -- 5.5 Conclusions -- References -- Chapter 6: Development and Potential Triggering Mechanisms for a Large Holocene Landslide in the Lower St. Lawrence Estuary -- 6.1 Introduction -- 6.1.1 Objectives -- 6.2 Data and Methods -- 6.3 Morphology of the Betsiamites Slide Complex -- 6.4 Lithostratigraphy and Failure Surface -- 6.5 Movement Development -- 6.6 Triggering Mechanisms -- 6.7 Concluding Remarks and Future Work -- References -- Chapter 7: Spatially Fixed Initial Break Point and Fault-Rock Development in a Landslide Area -- 7.1 Introduction -- 7.2 Setting -- 7.3 Methods -- 7.3.1 Tilt and Groundwater Level Measurement -- 7.3.2 Core Analysis -- 7.3.3 Detailed Monitoring During Slipa -- 7.4 Results -- 7.4.1 Dilation and Slip -- 7.4.2 Core Analysis -- 7.5 Summary -- References. , Chapter 8: Pore Water Geochemistry as a Tool for Identifying and Dating Recent Mass-Transport Deposits -- 8.1 Introduction -- 8.2 Study Area -- 8.3 Material and Methods -- 8.4 Results and Discussion -- 8.4.1 Pore Water Profiles at Potential MTD Sites -- 8.4.2 Geochemical Transport/Reaction Modeling -- 8.5 Conclusions -- References -- Chapter 9: An In-Situ Free-Fall Piezocone Penetrometer for Characterizing Soft and Sensitive Clays at Finneidfjord (Northern Norway) -- 9.1 Introduction -- 9.2 Setting -- 9.3 Material and Methods -- 9.4 Results -- 9.4.1 Comparison of FF-CPTU and Pushed CPTU Tests -- 9.4.2 Laboratory Analyses -- 9.4.3 Comparison of In-Situ and Laboratory Results -- 9.5 Discussion and Conclusion -- References -- Chapter 10: Static and Cyclic Shear Strength of Cohesive and Non-cohesive Sediments -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Research Approach -- 10.2.2 Sample Description -- 10.2.3 Testing Procedure -- 10.2.4 Data Acquisition and Analysis -- 10.3 Results and Discussion -- 10.3.1 Exemplary Cyclic Test Results -- 10.3.2 Generic Study -- 10.3.3 Case Study -- 10.4 Conclusion -- References -- Chapter 11: Upstream Migration of Knickpoints: Geotechnical Considerations -- 11.1 Introduction -- 11.2 Experimental Setup and Method -- 11.3 Results -- 11.4 Discussion -- 11.5 Conclusion -- References -- Part II: Seafloor Geomorphology for Trigger Mechanisms and Landslide Dynamics -- Chapter 12: A Reevaluation of the Munson-Nygren-Retriever Submarine Landslide Complex, Georges Bank Lower Slope, Western North Atlantic -- 12.1 Introduction -- 12.1.1 Data -- 12.2 Results and Interpretations -- 12.2.1 Munson-Nygren Slide -- 12.2.2 Retriever Slide -- 12.2.3 Picket Slide -- 12.3 Age of Slope Failure -- References -- Chapter 13: Submarine Landslides in Arctic Sedimentation: Canada Basin -- 13.1 Introduction -- 13.1.1 Regional Geology. , 13.1.2 Methods -- 13.2 Results -- 13.2.1 Canadian Archipelago Slope and Rise -- 13.2.2 MacKenzie-Beaufort Slope and Rise -- 13.3 Discussion and Conclusions -- References -- Chapter 14: Extensive Erosion of the Deep Seafloor - Implications for the Behavior of Flows Resulting from Continental Slope Instability -- 14.1 Introduction -- 14.2 Areas of Erosion by Gravity Currents -- 14.3 Areas of Deposition from Gravity Currents -- 14.4 Discussion -- 14.5 Conclusions -- References -- Chapter 15: Investigations of Slides at the Upper Continental Slope Off Vesterålen, North Norway -- 15.1 Introduction -- 15.2 Database -- 15.3 Landforms and Geological Setting -- 15.4 Results -- 15.4.1 Morphological Features -- 15.4.2 Seismic Stratigraphy, Slides and Failure Planes -- 15.4.3 X-Ray Images, Core Logging and Soil Mechanical Testing -- 15.5 Discussion -- 15.6 Summary and Conclusions -- References -- Chapter 16: Dakar Slide Offshore Senegal, NW-Africa: Interaction of Stacked Giant Mass Wasting Events and Canyon Evolution -- 16.1 Introduction -- 16.1.1 Structural Setting -- 16.1.2 Data -- 16.2 Results -- 16.2.1 Seismic Units and Stratigraphy -- 16.2.2 Dakar Slide -- 16.2.3 Older MTDs -- 16.2.4 Dakar Canyon -- 16.2.5 Sedimentary Ridges -- 16.3 Discussion -- 16.3.1 Dakar Slide: Age and Type of Failure -- 16.3.2 History of Mass Wasting Off Southern Senegal -- 16.3.3 Interaction Between Slope Failures and Canyons -- 16.4 Conclusion -- References -- Chapter 17: Large-Scale Mass Wasting on the Northwest African Continental Margin: Some General Implications for Mass Wasting on Passive Continental Margins -- 17.1 Introduction -- 17.2 Results and Interpretations -- 17.2.1 Sahara Slide -- 17.2.2 Cap Blanc Slide -- 17.2.3 Mauritania Slide Complex -- 17.2.4 Dakar Slide -- 17.3 Discussion -- 17.3.1 Mass Wasting Off Northwest Africa: Where and Why?. , 17.3.2 Timing of Landslides and Geohazard Potential -- 17.4 Conclusions -- References -- Chapter 18: Deep-Seated Bedrock Landslides and Submarine Canyon Evolution in an Active Tectonic Margin: Cook Strait, New Zealand -- 18.1 Introduction -- 18.2 Data Sets and Methodology -- 18.3 Results -- 18.3.1 Submarine Canyon Morphology -- 18.3.2 Landslides -- 18.3.2.1 Morphological Characteristics -- 18.3.2.2 Distribution -- 18.4 Discussion and Conclusions -- 18.4.1 Nature of Landslides -- 18.4.2 Causes of Landslides -- 18.4.3 Spatial Distribution of Landslides -- 18.4.4 Role of Landslides in Canyon Evolution -- References -- Chapter 19: Polyphase Emplacement of a 30 km 3 Blocky Debris Avalanche and Its Role in Slope-Gully Development -- 19.1 Introduction -- 19.2 Tectonic and Sedimentary Setting -- 19.3 Data and Methods -- 19.4 Stratigraphic and Morphological Analyses -- 19.5 PDA Emplacement and Upper Slope Gully Development -- 19.6 Summary -- References -- Chapter 20: Slope Failure and Canyon Development Along the Northern South China Sea Margin -- 20.1 Introduction -- 20.2 Regional Setting -- 20.3 Data and Methods -- 20.4 Results -- 20.4.1 Canyon Morphology -- 20.4.2 Slope Failure Features -- 20.5 Discussion -- 20.5.1 Canyon Origin -- 20.5.2 Implications for Geohazard Risk -- References -- Chapter 21: Distinguishing Sediment Bedforms from Sediment Deformation in Prodeltas of the Mediterranean Sea -- 21.1 Introduction -- 21.1.1 Regional Setting -- 21.1.2 Methods -- 21.2 Results -- 21.2.1 Morphology of Undulated Prodeltas -- 21.2.2 Seismostratigraphy of Prodelta Undulations -- 21.2.3 Physical Properties of Prodelta Undulations -- 21.2.4 Sediment Transport Processes on Undulated Prodeltas -- 21.3 Discussion and Conclusion -- References -- Chapter 22: Hydroacoustic Analysis of Mass Wasting Deposits in Lake Ohrid (FYR Macedonia/Albania) -- 22.1 Introduction. , 22.2 Seismic Stratigraphy and Slide Bodies.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Geology -- Northwest, Pacific. ; Geology, Structural. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book documents the geological, geophysical, geochemical and paleontological features of modern accretionay prisms and trenches in the northwestern Pacific Ocean, based on 10 years of submersible dive cruises, ODP drilling projects and geophysical surveys.
    Materialart: Online-Ressource
    Seiten: 1 online resource (293 pages)
    Ausgabe: 1st ed.
    ISBN: 9789048188857
    Serie: Modern Approaches in Solid Earth Sciences Series ; v.8
    DDC: 551.136
    Sprache: Englisch
    Anmerkung: Intro -- Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin -- Preface -- Acknowledgements -- Contents -- Contributors -- Bending-Related Topographic Structures of the Subducting Plate in the Northwestern Pacific Ocean -- 1 Introduction -- 2 Data and Methods -- 2.1 Bathymetric Data -- 2.2 Geomagnetic Data -- 3 Results -- 3.1 Overview of the Bathymetric Features -- 3.2 Topographic Expression of the Trenches -- 3.3 Bending-Related Structures of the Oceanward Trench Slopes -- 3.3.1 Kuril Trench -- 3.3.2 Japan Trench -- 3.3.3 Izu-Ogasawara Trench -- 3.4 Magnetic Anomalies -- 4 Discussion -- 4.1 Strike of Bending-Related Topographic Structures -- 4.2 Topographic Expression of Bending-Related Structures -- 5 Conclusions -- References -- Erosional Subduction Zonein the Northern Japan Trench: Review of Submersible Dive Reports -- 1 Introduction -- 2 Oceanward Slope Topography and Geology off Miyako -- 3 Landward Slope Topography and Geology off Miyako -- 4 Lineaments of the Oceanward and Landward Slopes off Miyako -- 5 Conclusions -- References -- Boso TTT-Type Triple Junction: Formation of Miocene to Quaternary Accretionary Prisms and Present-Day Gravitational Collapse -- 1 Introduction -- 2 Review of Sedimentation, Topography, and Plate Configuration -- 2.1 Sedimentation -- 2.2 Topographic Development of the Area from the Eastern Margin of the Sagami Trough to the Boso Triple Junction -- 2.3 Katsuura Basin and Mogi Submarine Fan in the Bando Deepsea Basin -- 2.4 Review of 3D Structure Based on Multichannel Seismic Profiles and Multibeam Echosounder Data -- 2.5 Relationship Between the Tectonic and Age Data -- 3 Diatom Analysis -- 3.1 Materials, Method, and Results -- 3.2 Diatom Biostratigraphy -- 3.2.1 Pleistocene to Holocene Samples -- 3.2.2 Middle Miocene Sample -- 3.3 Summary of Age of Samples. , 3.4 Correlation to the Marine Rocks of the Izu Forearc -- 4 Tectonic Synthesis: Summary and Conclusion -- References -- Rifting Structure of Central Izu-Ogasawara (Bonin) Arc Crust: Results of Seismic Crustal Imaging -- 1 Introduction -- 2 Data Acquisition -- 3 Data and Modeling Procedure -- 4 Description of Velocity Images -- 4.1 Line IBr9 -- 4.2 Line IBr10 -- 5 Discussion -- 5.1 Structural Commonalities and Differences -- 5.2 Origin of the Arc Crust -- 5.3 History of the Rifted Crust -- 5.4 Reason for the Thin Crust in the Central Izu-Ogasawara Arc -- 6 Conclusion -- References -- Seafloor Geology of the Basement Serpentinite Body in the Ohmachi Seamount (Izu-Bonin Arc) as Exhumed Parts of a Subduction Zone Within the Philippine Sea -- 1 Introduction -- 2 Geologic Setting and Bathymetry -- 3 Lithology -- 3.1 Serpentinites -- 3.1.1 Massive Serpentinite -- 3.1.2 Schistose Serpentinite -- 3.2 Amphibole Schist -- 3.3 Paleogene Volcanic Rocks -- 3.4 Miocene Turbidite -- 3.5 Soft Mud Beds -- 4 Dive and Dredge Results -- 4.1 Dive 6K#341 -- 4.2 Dive 6K#570 -- 4.3 Dive 6K#571 -- 4.4 Dive 6K#575 -- 4.5 Dive 6K#608 -- 4.6 Dive 6K#609 -- 4.7 Dive 6K#610 -- 4.8 Dive 6K#1064 -- 4.9 Dive 6K#1065 -- 4.10 Dive 6K#1066 -- 4.11 Dive 6K#1067 -- 4.12 Dive 6K#1068 -- 4.13 Dredges -- 5 Interpretation of Geologic Structures -- 5.1 Serpentinite Body -- 5.2 Overlying Formations -- 6 Structural Characteristics of Sub-crustal Origins -- 7 Exhumation to the Surface -- 8 Appendix: In Situ Measurement of Geological Surface Orientation by Submersible -- References -- Petrology and Mineralogy of Mantle Peridotites from the Southern Marianas -- 1 Introduction -- 2 Description of Dredge Sites and Geological Background -- 3 Petrographic Descriptions of the Peridotites -- 4 Chemical Composition of the Minerals -- 5 Discussion -- 5.1 Origin of the Plagioclase-Bearing Peridotite. , 5.2 Degree of Partial Melting -- 5.3 Degree of Melt Impregnation -- 6 Conclusions -- References -- Tectonics of Unusual Crustal Accretionin the Parece Vela Basin -- 1 Introduction -- 2 Oceanic Core Complexes -- 3 Crustal Accretion in the Parece Vela Basin -- 3.1 Morphology and Spreading of the Parece Vela Basin -- 3.2 Oceanic Core Complexes in the Parece Vela Basin -- 4 Mechanisms That Account for the Unusual Characteristics of the Parece Vela Basin -- 4.1 Presence of a Cold and/or Refractory Mantle Domain -- 4.2 Declining Spreading Rate During a Later Phase of the Second-Stage Spreading of the Parece Vela Basin -- 4.3 Transform Sandwich Effect -- 5 Relationships Between Mantle Thermal Anomaly, Fracture Zone Geometry, Occurrence of Oceanic Core Complexes and Spreading Rate -- 5.1 St. Paul FZ in the Mid-Atlantic Ridge -- 5.2 Australian-Antarctic Discordance in the Southeast Indian Ridge -- 5.3 Valdivia FZ in the Chile Ridge -- 6 Tectono-Magmatic Characteristics of Intra-Transform Spreading Centers in Fast-Spreading Ridges -- 7 Summary -- References -- Structural Profile and Development of the Accretionary Complex in the Nankai Trough, Southwest Japan: Results of Submersible Studies -- 1 Introduction -- 2 Framework of the Accretionary Complex in the Nankai Trough and the Shionomisaki Submarine Canyon -- 3 Methodology -- 4 Structural Profile of the Nankai Accretionary Complex -- 4.1 Frontal Thrust Zone (Dive 6K#938) -- 4.2 Imbricate Thrust Zone (Dive 6K#522) -- 4.3 The Megasplay Fault Zone (6K#579, 6K#889~891): Field Observations -- 4.4 The Megasplay Fault Zone: Material Properties, Depositional Ages and Cements -- 5 Discussion -- 5.1 Faults in the Accretionary Complex of the Nankai Trough -- 5.2 Tectonic Deformation vs. Creeping -- 5.3 Development of the Accretionary Complex -- 5.4 Roles of Carbonate Cementation in Concentration of Fluid and Strain. , 6 Summary -- References -- Submarine Outcrop Evidence for Transpressional Deformation Within the Nankai Accretionary Prism, Tenryu Canyon, Japan -- 1 Introduction -- 2 Tenryu Canyon -- 3 Outcrop Geology of Tenryu Canyon from SHINKAI 6500 -- 4 Dive-Transect Maps -- 5 Discussion -- 6 Conclusions -- References -- Rapid Exhumation of Subducted Sediments Along an Out-of-Sequence Thrust in the Modern Eastern Nankai Accretionary Prism -- 1 Introduction -- 2 Deformed Rocks of the Tenryu Canyon -- 3 Ages of Recovered Rocks -- 4 Illite Crystallinity and Vitrinite Reflectance -- 5 Physical-Mechanical Properties of Recovered Rocks -- 6 Processes of Tectonic Burial and Rapid Exhumation in the NAP -- 6.1 Burial Conditions -- 6.2 Processes and Mechanism of Rapid Exhumation -- References -- Dark Bands in the Submarine Nankai Accretionary Prism - Comparisons with Miocene-Pliocene Onshore Examples from Boso Peninsula -- 1 Introduction -- 2 Geological Setting of the Study Area -- 3 Occurrence of Samples and Dark Bands -- 3.1 6K#893 R-3 -- 3.2 6K#1056 R6-2, 6K#1060 R2-1 and R2-2 -- 4 Internal Structure of the Dark Bands -- 4.1 DB-1 in 6K#893 R-3 -- 4.2 DB-2 in 6K#893 R-3 -- 4.3 6K #1056 R6-2 -- 4.4 6K#1060 R2-1 -- 4.5 6K#1060 R2-2 -- 5 Comparison with the Miura-Boso Accretionary Prism and Formation Processes and Mechanisms of the Dark Bands -- 5.1 Characteristics of the Dark Bands of the Miura-Boso Accretionary Prism -- 5.2 DB-1 in 6K#893 R-3 -- 5.3 DB-2 in 6K#893 R-3 -- 5.4 6K#1056 R6-2 -- 5.5 6K#1060 R2-1 -- 5.6 6K#1060 R2-2 -- 6 Summary and Conclusions -- References -- Gas Chemistry of Pore Fluids from Oomine Ridge on the Nankai Accretionary Prism -- 1 Introduction -- 2 Sampling -- 3 Analysis -- 4 Results and Discussion -- 4.1 Quality of Extracted Gas -- 4.2 Pore-Water Chemistry -- 4.3 Gas Chemistry of Reactive Components. , 4.4 Gas Chemistry of Nonreactive Components -- 5 Conclusions -- References -- Long-Term Stability of Acoustic Benchmarks Deployed on Thick Sediment for GPS/Acoustic Seafloor Positioning -- 1 Introduction -- 2 Diving Surveys -- 3 Discussions -- 4 Summary -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-01-09
    Schlagwort(e): 125-783A; 125-784A; Actinolite; Albite; Calcite; Chlorite; Clinopyroxene; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Epidote; Event label; Hornblende; Joides Resolution; Leg125; North Pacific Ocean; Ocean Drilling Program; ODP; Opaque minerals; Prehnite; Quartz; Sample code/label; Sphene; Zeolite
    Materialart: Dataset
    Format: text/tab-separated-values, 156 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...