GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (2)
  • Milton :Taylor & Francis Group,  (2)
Publikationsart
Verlag/Herausgeber
  • Milton :Taylor & Francis Group,  (2)
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Plant regulators. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Climatic conditions are key determinants of plant growth, whether at the scale of temperature regulation of the cell cycle, or at the scale of the geographic limits for a particular species.
    Materialart: Online-Ressource
    Seiten: 1 online resource (225 pages)
    Ausgabe: 1st ed.
    ISBN: 9781000408546
    Serie: Footprints of Climate Variability on Plant Diversity Series
    DDC: 631.8/9
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Acknowledgements -- Editors -- List of Contributors -- Chapter 1 Role of Gibberellins in Response to Stress Adaptation in Plants -- 1.1 Introduction -- 1.2 Gibberellins Biosynthesis -- 1.2.1 Candidate Genes in Gibberellins Biosynthesis in Plants -- 1.3 Roles of Gibberellins in Stress Responses -- 1.3.1 Gibberellins in Stress Response to Abiotic Stress -- 1.3.1.1 Response to Temperature Stress -- 1.3.1.2 Response to Salt Stress -- 1.3.1.3 Response to Submergence -- 1.3.1.4 Response to Shade -- 1.3.1.5 Response to Mild Osmotic Stress -- 1.3.1.6 Response to Soil Drying -- 1.3.2 Gibberellins in Stress Response to Biotic Stress -- 1.4 Regulation of Gibberellins in Response to Stress Protection -- 1.4.1 Gibberellin Biosynthesis and Signal Transduction -- 1.4.2 Regulation of Gibberellin Metabolism and Signalling Cascades in Response to Abiotic Stresses -- 1.4.2.1 Interaction between Signalling Pathways of Gibberellin and Other Plant Hormones -- 1.4.2.2 Regulation of GA Metabolism and Its Signalling during Abiotic Stresses -- 1.4.2.3 Gibberellins Signalling Integrates Various Developmental and Environmental Signals -- 1.5 Conclusion -- References -- Chapter 2 Abscisic Acid and Abiotic Stress Tolerance in Crops -- 2.1 Introduction -- 2.2 Ubiquitination in ABA Signalling -- 2.3 ABA Signalling under Stress -- 2.3.1 Ca2+ Signalling with ABA Interaction and Regulation of Stomata -- 2.3.2 ABA Signalling Pathway Integration with Abiotic Stress -- 2.4 ABA Signalling in Plant Development -- 2.4.1 ABA Signalling in Lateral Root Formation and Seed Germination -- 2.4.2 ABA and Light-Signalling Convergence -- 2.4.3 ABA Signalling and Control of Flowering Time -- 2.5 Other Aspects of ABA Signalling -- 2.6 Conclusions -- References. , Chapter 3 Plant Growth Regulators' Role in Developing Cereal Crops Resilient to Climate Change -- 3.1 Introduction -- 3.2 Plant Growth Regulators -- 3.3 Crop Growth and Yield Responses under Stress Conditions -- 3.3.1 Drought Stress -- 3.3.2 Heat Stress -- 3.4 Role of PGRs in Developing Crop Species Resilient to Climate Change -- 3.4.1 Abscisic Acid (ABA) -- 3.4.2 Gibberellins -- 3.4.3 Brassinosteroids -- 3.5 Conclusion -- References -- Chapter 4 Jasmonates: Debatable Role in Temperature Stress Tolerance -- 4.1 Introduction -- 4.2 Multifunctional Roles of Jasmonates in Mitigating Temperature Stress: A Mechanistic Approach -- 4.2.1 JA-Regulated Stress Signalling -- 4.2.2 Roles of Jasmonates in Cold Stress Tolerance -- 4.2.3 Roles of Jasmonates in Heat Stress Tolerance -- 4.3 Engineering Jasmonate Genes for Producing Temperature Tolerant Crops -- 4.4 Cross-Talk between Jasmonates and Other Growth Regulators -- 4.5 Conclusion and Future Outlook -- References -- Chapter 5 The Role of Gibberellin against Abiotic Stress Tolerance in Plants -- 5.1 Introduction -- 5.2 Gibberellin Biosynthesis and Signal Transduction -- 5.3 Gibberellins in Abiotic Stress Responses -- 5.3.1 Heat and Cold Stress -- 5.3.2 Response to Drought -- 5.3.3 Response to Submergence -- 5.3.4 Response to Salinity -- 5.3.5 Shade Avoidance -- 5.3.6 Response to Osmotic Stress -- 5.4 Stress Tolerance in the Context of GA Signalling -- 5.5 Regulation of GA Metabolism and Signalling under Abiotic Stress -- 5.5.1 Interactive Cross-Talk Networking between GA and Other Hormone-Signalling Pathways -- 5.5.2 Unification of Plant Developmental and Environmental Signals -- 5.6 Conclusion -- References -- Chapter 6 Role of Phytohormones in Drought Stress -- 6.1 Introduction -- 6.2 Phytohormones: Key Regulators of Plant Responses during Abiotic Stresses -- 6.2.1 Abscisic Acid (ABA). , 6.2.2 Cytokinins (CKs) -- 6.2.3 Auxins (IAA) -- 6.2.4 Gibberellins (GAs) -- 6.2.5 Brassinosteroids (BRs) -- 6.2.6 Ethylene (ET) -- 6.2.7 Jasmonates (JAs) -- 6.2.8 Salicylic acid (SA) -- 6.2.9 Strigolactones (SLs) -- 6.3 Conclusion and Outlook -- References -- Chapter 7 Cross-Talk between Phytohormone-Signalling Pathways under Abiotic Stress Conditions -- 7.1 Introduction -- 7.2 Phytohormone Cross-Talk Under Abiotic Stresses -- 7.2.1 Abscisic Acid and Auxins -- 7.2.2 Abscisic Acid and Gibberellins -- 7.2.3 Abscisic Acid and Cytokinins -- 7.2.4 Abscisic Acid and Ethylene -- 7.2.5 Abscisic Acid and Jasmonic Acid -- 7.2.6 Gibberellins and Ethylene -- 7.2.7 Auxins and Ethylene -- 7.3 Conclusions -- References -- Chapter 8 Salicylic Acid: Its Role in Temperature Stress Tolerance -- 8.1 Introduction -- 8.2 Plant Temperature Stress Response -- 8.3 High Temperature Stress and Salicylic Acid -- 8.4 Chilling Stress and Salicylic Acid -- 8.5 Freezing Stress -- 8.6 Conclusion -- References -- Chapter 9 Ethylene: A Key Regulatory Molecule in Plant Appraisal of Abiotic Stress Tolerance -- 9.1 Introduction -- 9.1.1 Regulatory Role of Ethylene as a Signalling Molecule for Plant Growth and Responses -- 9.2 Ethylene Regulates Morphological and Structural Behaviour -- 9.2.1 Root Architecture as a Key Trait for Plant Morphology and Growth Responses -- 9.2.2 Triple Response -- 9.2.3 Nodule Development and Autoregulation -- 9.2.4 Ethylene and a Dual Outcome Interface -- 9.3 Ethylene as a Signal during Morphological and Anatomical Responses -- 9.3.1 Root System as a Close-Range Interface to Plant Morphology -- 9.3.2 Aerenchyma Formation and Adaptation -- 9.3.3 Shoot Systems as Agronomic Traits and Adaptation Mechanisms -- 9.3.4 Leaf Anatomy and Morphology -- 9.4 Interaction of Ethylene with Other Signalling Molecules under Abiotic Stress. , 9.4.1 The Potential Role of Ethylene in Waterlogging Mitigation -- 9.4.2 Role of Ethylene in Heat Stress -- 9.4.3 Cross-Talk between Ethylene and Heavy-Metal Stress -- 9.4.4 Ethylene as a Response Factor under Salinity Stress -- 9.4.5 Ethylene Production and Drought Stress -- 9.4.6 Cross-Talk between Ethylene and UV-B Stress -- Bibliography -- Chapter 10 The Role of Phytohormones in Heat Stress Tolerance in Plants -- 10.1 Introduction -- 10.2 Sensing Thermal Stimuli by Plants -- 10.3 The Concept of Basal and Acquired Thermo-Tolerance -- 10.4 Hormonal Cross-Talk -- 10.5 Hormones Involved in the Response of Plants to Heat Stress -- 10.5.1 Abscisic Acid (ABA) -- 10.5.2 Auxins -- 10.5.2.1 Application of Auxin Reverses HT Injury -- 10.5.3 Cytokinins -- 10.5.4 Gibberellins -- 10.5.5 Salicylic Acid -- 10.5.6 Jasmonic Acid -- 10.5.7 Brassinosteroids -- 10.5.8 Ethylene -- 10.5.9 Strigolactones -- 10.6 Biotechnological Applications -- 10.7 Conclusion and Future Perspective -- References -- Chapter 11 Plant Resilience to Abiotic Stress Mitigated through Phytohormones' Production and Their Transcriptional Control -- 11.1 Introduction -- 11.2 Classical Phytohormones: Role in the Regulation of Plant Internal Homeostasis, Adaptive Variation in Plant Architecture and Their Transcriptional Reprogramming Under Abiotic Stress Conditions -- 11.2.1 Auxin -- 11.2.2 Gibberellin -- 11.2.3 Cytokinins -- 11.2.4 Abscisic Acid -- 11.2.5 Ethylene -- 11.3 New Era Phytohormones: Role in the Regulation of Plant Internal Homeostasis, Adaptive Variation in Plant Architecture, and Their Transcriptional Reprogramming under Abiotic Stress Conditions -- 11.3.1 Brassinosteroids -- 11.3.2 Jasmonate (JA) -- 11.3.3 Strigolactones -- 11.3.4 Salicylic Acid -- 11.3.5 Nitric Oxide -- 11.4 Conclusion -- References -- Chapter 12 The Role of Phytohormones in Combating Biotic Stress. , 12.1 Introduction -- 12.2 Regulation of Biotic Stress Responses by Plant Hormones -- 12.3 Salicylic Acid -- 12.3.1 Biosynthesis of SA and Its Conjugates in Plant Defence -- 12.3.2 SA-Dependent Signalling -- 12.3.3 SA/ABA Antagonism -- 12.4 Jasmonates -- 12.4.1 Jasmonate Biosynthesis -- 12.4.2 Signal Perception and Transduction Pathways of Jasmonates -- 12.4.3 The Role of Jasmonates in Biotic Stress Tolerance -- 12.4.4 JA/SA Antagonism -- 12.5 Ethylene -- 12.5.1 Ethylene Biosynthesis -- 12.5.2 Ethylene Signalling -- 12.5.3 The Role of Ethylene in Biotic Stress -- 12.6 Abscisic Acid -- 12.6.1 The Role of Abscisic Acid in Biotic Stress -- 12.7 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Climatic changes. ; Plant-atmosphere relationships. ; Vegetation and climate. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: The book Climate change and Plants Interactions: Complexities and Surprise examines how plant growth characters influences/influenced by the climate change both in past and present scenarios.
    Materialart: Online-Ressource
    Seiten: 1 online resource (227 pages)
    Ausgabe: 1st ed.
    ISBN: 9781000379785
    Serie: Footprints of Climate Variability on Plant Diversity Series
    DDC: 581.722
    Sprache: Englisch
    Anmerkung: Intro -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Acknowledgements -- About the Editors -- List of Contributors -- 1. Agriculture Contribution toward Global Warming -- 1.1 Agriculture and Climate Change -- 1.2 Intergovernmental Panel on Climate Change (IPCC) -- 1.3 Effect of Climate Change on Agricultural Productivity -- 1.4 Impact of Climate Change on Insect Pests -- 1.5 Impact of Climate Change on Soil Erosion and Fertility -- 1.6 Role of Agriculture Sector in Greenhouse Gas (GHG) Emissions -- 1.7 Role of Livestock Farming in Greenhouse Gas (GHG) Emissions -- 1.8 Conclusion -- References -- 2. Climate Change and Climate Smart Plants Production Technology -- 2.1 Introduction -- 2.2 Climate Change, Adaptability, and Ecology of Legumes Crop -- 2.3 Role of Legumes in Body Health Maintenance -- 2.4 Legumes in Diet Can Help in Cardiovascular Health Stimulation (Legumes and Soybean) -- 2.5 Legumes and Recovery of Digestive Health and Prevention of Colon Cancer -- 2.6 Climate Change and Legume Productivity and Profitability -- 2.6.1 Short-Duration, High-Yielding Varieties -- 2.6.2 Improved Varieties with Drought Tolerance -- 2.6.3 New Niches -- 2.7 Advance Legumes Production Technology -- 2.7.1 Seed Inoculum -- 2.7.2 Method of Inoculation -- 2.7.3 Method of Sowing -- 2.7.4 Time of Sowing (Kharif Legumes/Rabi Legumes) -- 2.7.5 Seed Rate -- 2.7.6 Irrigation -- 2.7.7 Weed Management -- 2.7.8 Preventive Measures -- 2.7.9 Cultural Control -- 2.7.9.1 Crop Rotation -- 2.7.9.2 Tillage Practices -- 2.7.10 Mechanical (Physical) Control -- 2.7.11 Chemical Control -- 2.7.12 Integrated Weed Control -- 2.7.13 Diseases and Insect Pests of Legumes and Their Control -- 2.7.14 Disease Management Programme Should Include the Following Methods -- 2.7.14.1 Preventive Measures -- 2.7.14.2 Cultural Control -- 2.7.14.3 Seed Treatment. , 2.7.14.4 Foliar Spray -- 2.7.14.5 Integrated Disease Control -- 2.7.14.6 Bio Control -- 2.7.14.7 Cultural Control -- 2.7.14.8 Chemical Control -- 2.7.15 Harvesting and Threshing -- 2.7.16 Yield -- 2.7.17 Storage -- 2.7.18 Marketing -- 2.7.18.1 Advantages of Legume Planting -- 2.8 Conclusion -- References -- 3. Climate Change and Plant Growth - South Asian Perspective -- 3.1 Introduction -- 3.2 Climate Change in South Asia -- 3.2.1 Enhanced Temperatures -- 3.2.2 Precipitation and Water -- 3.2.3 Anthropogenic Climate Change -- 3.2.4 Agriculture Affected by Climate Change in South Asia -- 3.3 Plant Responses to Climate Change -- 3.3.1 Responses of Plants to CO2 -- 3.3.2 Effects of Climate Change on Respiration and Photosynthesis -- 3.3.3 Plant Responses to Dry Conditions -- 3.3.4 Plant Responses to Altered Precipitations -- 3.3.5 Plant Responses to Light -- 3.3.6 Plant Growth Responses to Temperature -- 3.4 Potential Positive Effects of Climate Change -- 3.5 Adaptations in South Asia to Face Climate Change -- 3.6 Conclusion -- References -- 4. Climate Change and Indoor Agriculture - The Environment for Plants -- 4.1 Introduction -- 4.1.1 General Climate Change Issues -- 4.2 Climate Change and Agriculture -- 4.3 Effects of Climate Change on Agriculture -- 4.4 Report of the Influence of Climate Change on Some Agricultural Crops -- 4.4.1 Sunflower -- 4.4.2 Cotton -- 4.4.3 Rice -- 4.4.4 Corn -- 4.4.5 Wheat -- 4.4.6 Coffee -- 4.4.7 Cassava -- 4.5 Report of the Influence of Climate Change on Some Ornamental Plants -- 4.5.1 Cyclamen -- 4.5.2 Rose -- 4.5.3 Honeysuckle -- 4.5.4 Oak -- 4.5.5 Clove -- 4.5.6 Lily -- 4.6 Losses -- 4.7 Indoor Agriculture -- 4.7.1 Hydroponics -- 4.7.2 Aquaponics -- 4.7.3 Aeroponics -- 4.7.4 Vertical Farming -- 4.7.4.1 Constituents of a Vertical Farm and Their Interactions. , 4.8 Environmental and Economic Reasons for Shifting from Conventional Farming to Agriculture in a Regulated Environment -- References -- 5. Water Availability and Productivity under Changing Climate -- 5.1 Introduction -- 5.2 Water Resources Availability -- 5.2.1 Rainfall -- 5.2.2 Groundwater -- 5.2.3 Surface Water -- 5.2.4 Hill Torrents -- 5.3 Water Allowance -- 5.4 Water Distribution Pattern -- 5.5 Water Productivity -- 5.6 Water Productivity: A Case Study of Pakistan -- 5.7 Conclusion -- References -- 6. Impact of Climate Change on Biodiversity of Insect Pests -- 6.1 Introduction -- 6.2 Effect of Increased Level of CO2 on Biodiversity of Insect Pests -- 6.3 Climate Change Impacts on the Agriculture Sector -- 6.4 Insects and Environment -- 6.5 General Impact on Insects -- 6.6 Effect of Precipitation on Biodiversity of Insect Pests -- 6.7 Conclusion -- References -- 7. Pheromonal and Microbial-Symbiotic-Associated Insect Behaviour -- 7.1 Introduction -- 7.2 Pheromone-Mediated Insect Behaviour -- 7.3 Microbial-Symbionts and Insect Host Interface -- 7.4 Microbial-Symbiotic-Mediated Behavioural Manipulation of Insect Host -- 7.5 Microbial-Symbionts Modulating Insect Pheromones -- 7.6 Extraction and Identification of Insect Pheromones -- 7.7 Omic Era -- 7.8 Conclusion and Future Directions -- Acknowledgement -- References -- 8. The Chemistry of Atmosphere -- 8.1 Introduction -- 8.2 Acid Rain -- 8.2.1 Measurement of Acid Rain -- 8.3 Ozone -- 8.3.1 Ozone Layer -- 8.3.2 Ozone Cycle -- 8.3.3 Ozone Layer Depletion -- 8.4 Smog -- 8.4.1 Photochemical Smog -- 8.5 Types of Atmosphere -- 8.5.1 Troposphere -- 8.5.2 Stratosphere -- 8.5.3 Mesosphere -- 8.5.4 Thermosphere -- 8.5.5 Exosphere -- 8.6 Conclusion -- References -- 9. Ocean as the Driver of the Global Carbon Cycle -- 9.1 Introduction -- 9.2 Carbon Cycle -- 9.2.1 Changes in the Carbon Cycle. , 9.3 Biological Pump -- 9.4 Ocean Acidification -- 9.5 Impacts on Oceanic Organisms -- 9.6 Anthropogenic Emissions of CO2 -- 9.6.1 Global Carbon Emission by Jurisdiction -- 9.7 Possible Responses -- 9.8 Conclusion -- References -- 10. Insect Pest Management in the Era of Climate Change -- 10.1 Introduction -- 10.2 Climate Change and Insect Pest Responses -- 10.3 Effect of Climate Change on Species Synchrony -- 10.4 Effects of Climate Change on Plant Volatile Compounds -- 10.5 Effect of Climate Change on Geographical Distribution of Insects -- 10.6 Potential Consequences of Climate Change for Invasive Species -- 10.7 Effect of Climate Change on Natural Enemies and Biological Control -- 10.8 The Omics Solutions to New Challenges -- 10.9 Conclusion -- References -- 11. Insect-Plant Interactions -- 11.1 Introduction -- 11.2 Stratum in Insect-Plant Interaction: Tri-Trophic Interactions or Three-Way Interactions -- 11.3 Resistance -- 11.4 Advances, Future Perspectives, and Challenges -- 11.5 Insects: Omnipresent and Versatile -- 11.6 Insect Pollinators: The Unsung Superheroes! -- 11.7 The Silent Alarm: The Unacknowledged Extinction Threat! -- 11.8 To Conserve, To Survive, To Sustain -- 11.9 Conclusion -- References -- 12. Human-Induced Climate Change -- 12.1 Introduction -- 12.2 Role of Humans in Worldwide Climate Change -- 12.3 Effect of Environmental Changes on Human Health -- 12.4 What Can Possibly Be Done? -- 12.5 Conclusion -- References -- 13. Plants, Environmental Constraints, and Climate Change -- 13.1 Introduction -- 13.2 Environmental Changes and Their Impact on Plant Physiology -- 13.2.1 Elevated CO2 Levels -- 13.2.2 Flooding -- 13.2.3 Elevated Ozone Concentrations -- 13.2.4 Drought Stress -- 13.2.5 Salinity Stress -- 13.2.6 Cold Stress -- 13.2.7 High Temperature -- 13.2.8 Nutrient Stress -- 13.2.9 Heavy Metals. , 13.2.10 Increased UV-B Radiation Fluxes -- 13.3 Biotic Stresses -- 13.4 Conclusion -- References -- 14. Traditional Ecological Knowledge and Medicinal Systems from Gilgit-Baltistan, Pakistan: An Ethnoecological Perspective -- 14.1 Introduction -- 14.1.1 Ethnoecology, Traditional Ecological Knowledge (TEK), and Climate Change -- 14.1.2 TEK and Medicinal Plants - Global Perspective -- 14.1.3 Regional Profile of Gilgit-Baltistan -- 14.1.4 Ethnographic Profile of the Region -- 14.1.5 Geographic Division of Gilgit-Baltistan -- 14.1.6 Key Geographic Features of Gilgit-Baltistan -- 14.1.7 Sources of Livelihoods for the Local Communities -- 14.2 Occurrence and Markets for Medicinal Plants in Gilgit-Baltistan -- 14.3 Medicinal Systems and Affiliations -- 14.4 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...