GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Electrochemical sensors. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (341 pages)
    Edition: 1st ed.
    ISBN: 9780128225134
    Series Statement: Micro and Nano Technologies Series
    DDC: 543
    Language: English
    Note: Front Cover -- Nanomaterials-based Electrochemical Sensors: Properties, Applications, and Recent Advances -- Copyright Page -- Contents -- List of contributors -- 1 Introduction: nanomaterials and electrochemical sensors -- 1.1 Introduction -- 1.2 Voltammetric methods -- 1.3 Cyclic voltammetry -- 1.4 Differential pulse voltammetry -- 1.5 Square wave voltammetry -- 1.6 Electrochemical impedance spectroscopy -- 1.7 Electronic tongue: concepts, principles, and applications -- 1.8 Future prospects -- 1.9 Conclusion -- References -- 2 Nanomaterial properties and applications -- 2.1 Nanomaterials -- 2.2 History -- 2.3 Nanomaterial type -- 2.3.1 According to their dimension -- 2.3.2 According to origin -- 2.3.3 According to chemical composition -- 2.3.4 Carbon-based nanomaterials -- 2.4 Metal nanomaterials -- 2.4.1 Bimetallic nanomaterials -- 2.5 Metal oxide nanomaterials -- 2.5.1 Composite nanomaterials -- 2.5.2 Metal-Organic Frameworks -- 2.5.3 Silicates -- 2.6 Properties of nanomaterials -- 2.6.1 Optical properties -- 2.6.2 Electronics properties -- 2.6.3 Mechanical Properties -- 2.6.4 Magnetic properties -- 2.6.5 Thermal properties -- 2.6.6 Physiochemical properties -- 2.7 Application -- 2.7.1 As a chemical catalyst -- 2.7.2 In food and agriculture -- 2.7.3 In energy harvesting -- 2.7.4 In medication and drug -- 2.7.5 Applications in electronics -- 2.7.6 In mechanical industries -- 2.7.7 In the environment -- 2.8 Conclusion -- References -- 3 Analytical techniques for nanomaterials -- 3.1 Introduction -- 3.2 Different analytical techniques for nanomaterials -- 3.2.1 Electron Microscopy -- 3.2.1.1 Transmission electron microscope -- 3.2.1.2 Scanning electron microscope -- 3.2.2 Dynamic light scattering -- 3.2.2.1 Correlation function -- 3.2.3 Atomic force microscope -- 3.2.4 X-ray diffraction -- 3.2.5 Zeta potential instrument. , 3.2.6 Emmett, Brunauer, and Teller or surface area -- 3.2.7 Fourier transform infrared spectroscopy -- 3.2.8 Thermogravimetric analysis -- 3.3 Conclusion -- References -- 4 Toxicity of nanomaterials -- 4.1 Introduction -- 4.1.1 Nanomaterials -- 4.1.2 Effect of physicochemical properties of nanomaterials on toxicity -- 4.2 Toxic effects of nanomaterials on humans and animals -- 4.3 Toxic effects of nanomaterials on microorganisms -- 4.4 Toxic effects of nanoparticles on plants -- 4.5 Assessment of toxicity of nanomaterials -- 4.5.1 Cytotoxic assays -- 4.5.1.1 5-Diphenyltetrazolium bromide assay -- 4.5.1.2 Reactive oxygen species/oxidative assays -- 4.5.1.3 Neutral red uptake assay -- 4.5.1.4 Apoptosis assay -- 4.5.2 Genotoxicity/mutagenicity assays -- 4.5.2.1 In vitro mammalian chromosomal aberration test -- 4.5.2.2 In vitro mammalian cell gene mutation tests using the Hprt and xprt Genes -- 4.5.2.3 In vitro mammalian micronucleus test -- 4.5.3 In vivo assessment of nanomaterials -- 4.5.3.1 Mammalian bone marrow chromosome aberration test -- 4.5.3.2 Mammalian erythrocyte micronucleus test (OECD 474-TG) -- 4.5.4 In silico models -- 4.6 Conclusion and future prospects -- Acknowledgements -- References -- 5 Electrochemical sensors and their types -- 5.1 Introduction -- 5.1.1 Electroanalytical chemistry -- 5.1.1.1 Electroanalytical techniques -- 5.1.1.2 Recent developments in detection techniques -- 5.1.1.3 Advantages -- 5.1.1.4 Improvements needed -- 5.1.2 Sensors -- 5.1.2.1 Ideal sensor -- 5.1.2.2 Chemical sensors -- 5.1.2.3 Types of chemical sensors -- 5.1.3 Electrochemical sensors -- 5.1.3.1 Construction of electrochemical sensors -- 5.1.3.2 Advantages of electrochemical sensors -- 5.1.3.3 Types of electrochemical sensors -- 5.1.4 Cyclic voltammetry -- 5.1.4.1 Basic principle of cyclic voltammetry -- 5.1.5 Applications of electrochemical sensors. , 5.1.6 Electrochemical sensing of heavy metal ions -- 5.1.6.1 General experimental setup -- 5.1.7 Carbon-based electrode materials -- 5.1.7.1 Glassy carbon electrodes -- 5.1.7.2 Chemically modified electrodes -- 5.1.7.3 Material used for chemical modification of a glassy carbon electrode -- 5.2 Conclusion -- References -- 6 Electrochemical sensors and nanotechnology -- Objectives -- 6.1 Introduction -- 6.2 Nanotechnology -- 6.2.1 Drug delivery -- 6.2.2 Nanofilms -- 6.2.3 Water filtration -- 6.2.4 Nanotubes -- 6.2.5 Nanoscale transistors -- 6.2.6 Nanorobots -- 6.2.7 Nanotechnology and space -- 6.2.8 Nanotechnology in electronics: nanoelectronics -- 6.2.9 Nanotechnology in medicine -- 6.3 Electrochemical sensors -- 6.3.1 Carbonaceous materials-based electrochemical sensors -- 6.3.2 Metal-derived materials-based electrochemical sensors -- 6.3.3 Nanomaterials-based electrochemical sensors -- 6.4 Nanosensing technology -- 6.5 Challenges -- 6.6 Future perspective -- 6.7 Conclusion -- References -- 7 Sensing methodology -- 7.1 Introduction -- 7.1.1 Advancements in nanotechnology -- 7.1.2 Development of nanomaterials -- 7.1.3 2-Dimensional nanomaterials -- 7.2 Sensing methodology -- 7.2.1 Electrochemical biosensors -- 7.2.2 Electrochemical sensors -- 7.3 Nanomaterial-based electrochemical biosensors for biomedical applications -- 7.3.1 Types of nanotechnologies used in the medical field -- 7.3.1.1 Carbon nanotubes -- 7.3.1.2 Metal nanoparticles -- 7.3.1.3 Nanotubes -- 7.4 Nanomaterials-based electrochemical biosensors for tumor cell diagnosis -- 7.4.1 Nanoshells and quantum dots -- 7.4.2 Electrochemical biosensor in cancer cell detection -- 7.4.3 Electrochemical immunosensors in cancer cell detection -- 7.4.4 Electrochemical nucleic acid biosensors in cancer cell detection -- 7.5 Nanomaterial-based electrochemical sensors for environmental applications. , 7.5.1 Sensor applications for pollution detection and environmental contaminants -- 7.5.1.1 Emerging contaminants and toxic gases -- 7.5.1.2 Screen-printed electrodes -- 7.5.1.3 Nanowires -- 7.5.2 Electrochemical sensors for toxic gas detection -- 7.5.2.1 Components and working of electrochemical sensors -- 7.5.2.2 Configurations of electrochemical sensors -- 7.6 Conclusions -- Acknowledgements -- References -- 8 Fabrication of biosensors -- 8.1 Introduction to biosensors -- 8.2 Components of biosensors -- 8.3 Biosensor transducers -- 8.3.1 Optical biosensors -- 8.3.2 Piezoelectric biosensors -- 8.3.3 Calorimetric biosensors -- 8.4 Electrochemical biosensor -- 8.4.1 Potentiometric biosensors -- 8.4.2 Amperometric biosensors -- 8.5 Electrode fabrication technologies -- 8.5.1 Fabrication of nanomaterial-based biosensors -- 8.5.1.1 Coating-based methods -- 8.5.1.2 Deposition-based methods of biosensor fabrication -- 8.5.1.3 Printing-based methods -- 8.6 Direct growth -- 8.7 Self-powered implantable biosensor -- 8.7.1 Glucose detection -- 8.8 Conclusion and outlook -- References -- 9 Metal oxide and their sensing applications -- 9.1 Introduction -- 9.1.1 Metal-oxides-based chemical sensors -- 9.1.2 Metal oxides-based biosensors -- 9.2 Overview of metal oxides for different applications -- 9.2.1 ZnO-based sensors -- 9.2.2 Indium oxide-based sensors -- 9.2.3 Nickel oxide-based sensors -- 9.2.4 Titanium oxide-based sensors -- 9.2.5 Copper oxides-based sensors -- 9.2.6 Tin oxide-based sensors -- 9.2.7 Cerium oxide-based sensors -- 9.2.8 Iron oxide-based sensors -- 9.3 Different sensing techniques for sensing applications -- 9.3.1 Electrochemical sensing technique -- 9.3.1.1 Cyclic voltammetry -- 9.3.1.2 Linear sweep voltammetry -- 9.3.1.3 Amperometry -- 9.3.1.4 Electrochemical impedance spectroscopy -- 9.3.2 Colorimetric technique. , 9.3.3 Fluorescence technique -- 9.3.4 Quartz crystal microbalance technique -- 9.3.5 Surface-enhanced Raman scattering technique -- 9.3.5.1 Electromagnetic process -- 9.3.5.2 Chemical process -- 9.4 Electrochemical sensing based on metal oxides -- 9.5 Colorimetric and fluorometric sensing based on metal oxides -- 9.6 Fluorescent and chemiluminescent sensing based on metal oxides -- 9.7 Issues and drawbacks -- 9.8 Conclusion and Future prospective -- References -- 10 RFID sensors based on nanomaterials -- 10.1 Introduction -- 10.2 Nanomaterials for RFID sensors -- 10.3 Inkjet printing of nanomaterial-based RFID sensors -- 10.4 Applications of RFID nanosensors -- 10.4.1 Energy -- 10.4.2 Food industry -- 10.4.3 Biomedical applications -- 10.4.4 Structural health -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Biological and biomedical applications of electrochemical sensors -- 11.1 Introduction -- 11.2 Components of electrochemical sensors -- 11.2.1 Hydrophobic membrane -- 11.2.2 Electrodes -- 11.2.3 Electrolyte -- 11.2.4 Filters -- 11.3 Working principle of electrochemical sensors -- 11.4 Fabrication of nanomaterial-based electrochemical sensor -- 11.4.1 Magnetic nanomaterials -- 11.4.2 Polymer -- 11.4.3 Metal oxide -- 11.4.4 Noble metals -- 11.4.4.1 Gold nanoparticles -- 11.4.4.2 Silver nanoparticles -- 11.4.5 Carbon nanotubes -- 11.4.5.1 Graphene -- 11.5 Biological and biomedical applications of electrochemical sensors -- 11.5.1 In Metabolite -- 11.5.1.1 Glucose -- 11.5.2 Body fluid ketones -- 11.5.3 Recognition of H2O2 from breast cancer cells -- 11.5.4 Quantitation of neurochemicals -- 11.5.5 Electrochemical detection of antibiotics in biological samples -- 11.5.6 Measurement of biomolecules -- 11.5.7 Electrochemical detection of nitrogen oxide in human beings -- 11.5.8 Electrochemical detection of nitrogen oxide in plants. , 11.5.9 Electrochemical sensors for detecting pathogens.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...