GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electrochemical sensors.  (1)
  • Englisch  (1)
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Electrochemical sensors. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (341 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128225134
    Serie: Micro and Nano Technologies Series
    DDC: 543
    Sprache: Englisch
    Anmerkung: Front Cover -- Nanomaterials-based Electrochemical Sensors: Properties, Applications, and Recent Advances -- Copyright Page -- Contents -- List of contributors -- 1 Introduction: nanomaterials and electrochemical sensors -- 1.1 Introduction -- 1.2 Voltammetric methods -- 1.3 Cyclic voltammetry -- 1.4 Differential pulse voltammetry -- 1.5 Square wave voltammetry -- 1.6 Electrochemical impedance spectroscopy -- 1.7 Electronic tongue: concepts, principles, and applications -- 1.8 Future prospects -- 1.9 Conclusion -- References -- 2 Nanomaterial properties and applications -- 2.1 Nanomaterials -- 2.2 History -- 2.3 Nanomaterial type -- 2.3.1 According to their dimension -- 2.3.2 According to origin -- 2.3.3 According to chemical composition -- 2.3.4 Carbon-based nanomaterials -- 2.4 Metal nanomaterials -- 2.4.1 Bimetallic nanomaterials -- 2.5 Metal oxide nanomaterials -- 2.5.1 Composite nanomaterials -- 2.5.2 Metal-Organic Frameworks -- 2.5.3 Silicates -- 2.6 Properties of nanomaterials -- 2.6.1 Optical properties -- 2.6.2 Electronics properties -- 2.6.3 Mechanical Properties -- 2.6.4 Magnetic properties -- 2.6.5 Thermal properties -- 2.6.6 Physiochemical properties -- 2.7 Application -- 2.7.1 As a chemical catalyst -- 2.7.2 In food and agriculture -- 2.7.3 In energy harvesting -- 2.7.4 In medication and drug -- 2.7.5 Applications in electronics -- 2.7.6 In mechanical industries -- 2.7.7 In the environment -- 2.8 Conclusion -- References -- 3 Analytical techniques for nanomaterials -- 3.1 Introduction -- 3.2 Different analytical techniques for nanomaterials -- 3.2.1 Electron Microscopy -- 3.2.1.1 Transmission electron microscope -- 3.2.1.2 Scanning electron microscope -- 3.2.2 Dynamic light scattering -- 3.2.2.1 Correlation function -- 3.2.3 Atomic force microscope -- 3.2.4 X-ray diffraction -- 3.2.5 Zeta potential instrument. , 3.2.6 Emmett, Brunauer, and Teller or surface area -- 3.2.7 Fourier transform infrared spectroscopy -- 3.2.8 Thermogravimetric analysis -- 3.3 Conclusion -- References -- 4 Toxicity of nanomaterials -- 4.1 Introduction -- 4.1.1 Nanomaterials -- 4.1.2 Effect of physicochemical properties of nanomaterials on toxicity -- 4.2 Toxic effects of nanomaterials on humans and animals -- 4.3 Toxic effects of nanomaterials on microorganisms -- 4.4 Toxic effects of nanoparticles on plants -- 4.5 Assessment of toxicity of nanomaterials -- 4.5.1 Cytotoxic assays -- 4.5.1.1 5-Diphenyltetrazolium bromide assay -- 4.5.1.2 Reactive oxygen species/oxidative assays -- 4.5.1.3 Neutral red uptake assay -- 4.5.1.4 Apoptosis assay -- 4.5.2 Genotoxicity/mutagenicity assays -- 4.5.2.1 In vitro mammalian chromosomal aberration test -- 4.5.2.2 In vitro mammalian cell gene mutation tests using the Hprt and xprt Genes -- 4.5.2.3 In vitro mammalian micronucleus test -- 4.5.3 In vivo assessment of nanomaterials -- 4.5.3.1 Mammalian bone marrow chromosome aberration test -- 4.5.3.2 Mammalian erythrocyte micronucleus test (OECD 474-TG) -- 4.5.4 In silico models -- 4.6 Conclusion and future prospects -- Acknowledgements -- References -- 5 Electrochemical sensors and their types -- 5.1 Introduction -- 5.1.1 Electroanalytical chemistry -- 5.1.1.1 Electroanalytical techniques -- 5.1.1.2 Recent developments in detection techniques -- 5.1.1.3 Advantages -- 5.1.1.4 Improvements needed -- 5.1.2 Sensors -- 5.1.2.1 Ideal sensor -- 5.1.2.2 Chemical sensors -- 5.1.2.3 Types of chemical sensors -- 5.1.3 Electrochemical sensors -- 5.1.3.1 Construction of electrochemical sensors -- 5.1.3.2 Advantages of electrochemical sensors -- 5.1.3.3 Types of electrochemical sensors -- 5.1.4 Cyclic voltammetry -- 5.1.4.1 Basic principle of cyclic voltammetry -- 5.1.5 Applications of electrochemical sensors. , 5.1.6 Electrochemical sensing of heavy metal ions -- 5.1.6.1 General experimental setup -- 5.1.7 Carbon-based electrode materials -- 5.1.7.1 Glassy carbon electrodes -- 5.1.7.2 Chemically modified electrodes -- 5.1.7.3 Material used for chemical modification of a glassy carbon electrode -- 5.2 Conclusion -- References -- 6 Electrochemical sensors and nanotechnology -- Objectives -- 6.1 Introduction -- 6.2 Nanotechnology -- 6.2.1 Drug delivery -- 6.2.2 Nanofilms -- 6.2.3 Water filtration -- 6.2.4 Nanotubes -- 6.2.5 Nanoscale transistors -- 6.2.6 Nanorobots -- 6.2.7 Nanotechnology and space -- 6.2.8 Nanotechnology in electronics: nanoelectronics -- 6.2.9 Nanotechnology in medicine -- 6.3 Electrochemical sensors -- 6.3.1 Carbonaceous materials-based electrochemical sensors -- 6.3.2 Metal-derived materials-based electrochemical sensors -- 6.3.3 Nanomaterials-based electrochemical sensors -- 6.4 Nanosensing technology -- 6.5 Challenges -- 6.6 Future perspective -- 6.7 Conclusion -- References -- 7 Sensing methodology -- 7.1 Introduction -- 7.1.1 Advancements in nanotechnology -- 7.1.2 Development of nanomaterials -- 7.1.3 2-Dimensional nanomaterials -- 7.2 Sensing methodology -- 7.2.1 Electrochemical biosensors -- 7.2.2 Electrochemical sensors -- 7.3 Nanomaterial-based electrochemical biosensors for biomedical applications -- 7.3.1 Types of nanotechnologies used in the medical field -- 7.3.1.1 Carbon nanotubes -- 7.3.1.2 Metal nanoparticles -- 7.3.1.3 Nanotubes -- 7.4 Nanomaterials-based electrochemical biosensors for tumor cell diagnosis -- 7.4.1 Nanoshells and quantum dots -- 7.4.2 Electrochemical biosensor in cancer cell detection -- 7.4.3 Electrochemical immunosensors in cancer cell detection -- 7.4.4 Electrochemical nucleic acid biosensors in cancer cell detection -- 7.5 Nanomaterial-based electrochemical sensors for environmental applications. , 7.5.1 Sensor applications for pollution detection and environmental contaminants -- 7.5.1.1 Emerging contaminants and toxic gases -- 7.5.1.2 Screen-printed electrodes -- 7.5.1.3 Nanowires -- 7.5.2 Electrochemical sensors for toxic gas detection -- 7.5.2.1 Components and working of electrochemical sensors -- 7.5.2.2 Configurations of electrochemical sensors -- 7.6 Conclusions -- Acknowledgements -- References -- 8 Fabrication of biosensors -- 8.1 Introduction to biosensors -- 8.2 Components of biosensors -- 8.3 Biosensor transducers -- 8.3.1 Optical biosensors -- 8.3.2 Piezoelectric biosensors -- 8.3.3 Calorimetric biosensors -- 8.4 Electrochemical biosensor -- 8.4.1 Potentiometric biosensors -- 8.4.2 Amperometric biosensors -- 8.5 Electrode fabrication technologies -- 8.5.1 Fabrication of nanomaterial-based biosensors -- 8.5.1.1 Coating-based methods -- 8.5.1.2 Deposition-based methods of biosensor fabrication -- 8.5.1.3 Printing-based methods -- 8.6 Direct growth -- 8.7 Self-powered implantable biosensor -- 8.7.1 Glucose detection -- 8.8 Conclusion and outlook -- References -- 9 Metal oxide and their sensing applications -- 9.1 Introduction -- 9.1.1 Metal-oxides-based chemical sensors -- 9.1.2 Metal oxides-based biosensors -- 9.2 Overview of metal oxides for different applications -- 9.2.1 ZnO-based sensors -- 9.2.2 Indium oxide-based sensors -- 9.2.3 Nickel oxide-based sensors -- 9.2.4 Titanium oxide-based sensors -- 9.2.5 Copper oxides-based sensors -- 9.2.6 Tin oxide-based sensors -- 9.2.7 Cerium oxide-based sensors -- 9.2.8 Iron oxide-based sensors -- 9.3 Different sensing techniques for sensing applications -- 9.3.1 Electrochemical sensing technique -- 9.3.1.1 Cyclic voltammetry -- 9.3.1.2 Linear sweep voltammetry -- 9.3.1.3 Amperometry -- 9.3.1.4 Electrochemical impedance spectroscopy -- 9.3.2 Colorimetric technique. , 9.3.3 Fluorescence technique -- 9.3.4 Quartz crystal microbalance technique -- 9.3.5 Surface-enhanced Raman scattering technique -- 9.3.5.1 Electromagnetic process -- 9.3.5.2 Chemical process -- 9.4 Electrochemical sensing based on metal oxides -- 9.5 Colorimetric and fluorometric sensing based on metal oxides -- 9.6 Fluorescent and chemiluminescent sensing based on metal oxides -- 9.7 Issues and drawbacks -- 9.8 Conclusion and Future prospective -- References -- 10 RFID sensors based on nanomaterials -- 10.1 Introduction -- 10.2 Nanomaterials for RFID sensors -- 10.3 Inkjet printing of nanomaterial-based RFID sensors -- 10.4 Applications of RFID nanosensors -- 10.4.1 Energy -- 10.4.2 Food industry -- 10.4.3 Biomedical applications -- 10.4.4 Structural health -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Biological and biomedical applications of electrochemical sensors -- 11.1 Introduction -- 11.2 Components of electrochemical sensors -- 11.2.1 Hydrophobic membrane -- 11.2.2 Electrodes -- 11.2.3 Electrolyte -- 11.2.4 Filters -- 11.3 Working principle of electrochemical sensors -- 11.4 Fabrication of nanomaterial-based electrochemical sensor -- 11.4.1 Magnetic nanomaterials -- 11.4.2 Polymer -- 11.4.3 Metal oxide -- 11.4.4 Noble metals -- 11.4.4.1 Gold nanoparticles -- 11.4.4.2 Silver nanoparticles -- 11.4.5 Carbon nanotubes -- 11.4.5.1 Graphene -- 11.5 Biological and biomedical applications of electrochemical sensors -- 11.5.1 In Metabolite -- 11.5.1.1 Glucose -- 11.5.2 Body fluid ketones -- 11.5.3 Recognition of H2O2 from breast cancer cells -- 11.5.4 Quantitation of neurochemicals -- 11.5.5 Electrochemical detection of antibiotics in biological samples -- 11.5.6 Measurement of biomolecules -- 11.5.7 Electrochemical detection of nitrogen oxide in human beings -- 11.5.8 Electrochemical detection of nitrogen oxide in plants. , 11.5.9 Electrochemical sensors for detecting pathogens.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...