GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • East Pacific Rise  (11)
  • Submarine volcanism  (5)
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    ISSN: 1573-0581
    Schlagwort(e): transform ; Sea MARC II side-looking sonar ; intratransform spreading centers ; East Pacific Rise
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract The Siqueiros transform fault system, which offsets the East Pacific Rise between 8°20′N–8°30′N, has been mapped with the Sea MARC II sonar system and is found to consist of four intra-transform spreading centers and five strike-slip faults. The bathymetric and side-looking sonar data define the total width of the transform domain to be ≈20km. The transform domain includes prominent topographic features that are related to either seafloor spreading processes at the short spreading centers or shearing along the bounding faults. The spreading axes and the seafloor on the flanks of each small spreading center comprise morphological and structural features which suggest that the two western spreading centers are older than the eastern spreading centers. Structural data for the Clipperton, Orozco and Siqueiros transforms, indicate that the relative plate motion geometry of the Pacific-Cocos plate boundary has been stable for the past ≈1.5 Ma. Because the seafloor spreading fabric on the flanks of the western spreading centers is ≈500 000 years old and parallels the present EPR abyssal hill trend (350°) we conclude that a small change in plate motion was not the cause for intra-transform spreading center development in Siqueiros. We suggest that the impetus for the development of intra-transform spreading centers along the Siqueiros transform system was provided by the interaction of small melt anomalies in the mantle (SMAM) with deepseated, throughgoing lithospheric fractures within the shear zone. Initially, eruption sites may have been preferentially located along strike-slip faults and/or along cross-faults that eventually developed into pull-apart basins. Spreading centers C and D in the eastern portion of Siqueiros are in this initial pull-apart stage. Continued intrusion and volcanism along a short ridge within a pull-apart basin may lead to the formation of a stable, small intra-transform spreading center that creates a narrow swath of ridge-parallel structures within the transform domain. The morphology and structure of the axes and flanks of spreading centers A and B in the western and central portion of Siqueiros reflect this type of evolution and suggest that magmatism associated with these intra-transform spreading centers has been active for the past ≈0.5–1.0 Ma.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-0581
    Schlagwort(e): Mid-Ocean Ridge ; East Pacific Rise ; SeaMARC II ; segmentation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract SeaMARC II and Sea Beam bathymetric data are combined to create a chart of the East Pacific Rise (EPR) from 8°N to 18°N reaching at least 1 Ma onto the rise flanks in most places. Based on these data as well as SeaMARC II side scan sonar mosaics we offer the following observations and conclusions. The EPR is segmented by ridge axis discontinuities such that the average segment lengths in the area are 360 km for first-order segments, 140 km for second-order segments, 52 km for third-order segments, and 13 km for fourth-order segments. All three first-order discontinuities are transform faults. Where the rise axis is a bathymetric high, second-order discontinuities are overlapping spreading centers (OSCs), usually with a distinctive 3:1 overlap to offset ratio. The off-axis discordant zones created by the OSCs are V-shaped in plan view indicating along axis migration at rates of 40–100 mm yr−1. The discordant zones consist of discrete abandoned ridge tips and overlap basins within a broad wake of anomalously deep bathymetry and high crustal magnetization. The discordant zones indicate that OSCs have commenced at different times and have migrated in different directions. This rules out any linkage between OSCs and a hot spot reference frame. The spacing of abandoned ridges indicates a recurrence interval for ridge abandonment of 20,000–200,000 yrs for OSCs with an average interval of approximately 100,000 yrs. Where the rise axis is a bathymetric low, the only second-order discontinuity mapped is a right-stepping jog in the axial rift valley. The discordant zone consists of a V-shaped wake of elongated deeps and interlocking ridges, similar to the wakes of second-order discontinuities on slow-spreading ridges. At the second-order segment level, long segments tend to lengthen at the expense of neighboring shorter segments. This can be understood if segments can be approximated by cracks, because the propagation force at a crack tip is directly proportional to crack length. There has been a counter-clockwise change in the direction of spreading on the EPR between 8 and 18° N during the last 1 Ma. The cumulative change has been 3°–6°, producing opening across the Orozco and Siqueiros transform faults and closing across the Clipperton transform. The instantaneous present-day Cocos-Pacific pole is located at approximately 38.4° N, 109.5° W with an angular rotation rate of 2.10° m.y.−1 This change in spreading direction explains the predominance of right-stepping discontinuities of orders 2–4 along the Siqueiros-Clipperton and Orozco-Rivera segments, but does not explain other aspects of segmentation which are thought to be linked to patterns of melt supply to the ridge axis. There are 23 significant seamount chains in the mapped area and most are created very near the spreading axis. Nearly all of the seamount chains have trends which fall between the absolute and relative plate motion vectors.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q10T07, doi:10.1029/2008GC002354.
    Beschreibung: High-resolution side-scan sonar, near-bottom multibeam bathymetry, and deep-sea photo and bathymetry traverses are used to map the axial summit trough (AST) at the East Pacific Rise between 9 and 10°N. We define three ridge axis morphologic types: no AST, narrow AST, and wide AST, which characterize distinct ridge crest domains spanning tens of kilometers along strike. Near-bottom observations, modeling of deformation above intruding dikes, and comparisons to the geologic and geophysical structure of the ridge crest are used to develop a revised model of AST genesis and evolution. This model helps constrain the record of intrusive and extrusive magmatism and styles of lava deposition along the ridge crest at time scales from hundreds to tens of thousands of years. The grabens in the narrow-AST domain (9°43′–53′N) are consistent with deformation above the most recent (〈10) diking events beneath the ridge crest. Frequent high–effusion rate extrusive volcanism in this domain (several eruptions every ∼100 years) overprints near-axis deformation and maintains a consistent AST width. The most recent eruption at the ridge crest occurred in this area and did not significantly modify the physical characteristics of the AST. The grabens in the wide-AST domain (9°23′–43′N) originated with similar dimensions to the narrow AST. Spreading, driven primarily by the intrusion of shallow dikes within a narrow axial zone, causes the initial graben bounding faults to migrate away from the axis. Infrequent extrusive volcanism (several eruptions every ∼1000 years) fills a portion of the subsidence that accumulates over time but does not significantly modify the width of the AST. Outside of these domains, lower–effusion rate constructional volcanism without efficient drain-back fills and erases the signature of the AST. The relative frequency of intrusive versus extrusive magmatic events controls the morphology of the ridge crest and appears to remain constant over millennial time scales within the domains we have identified; however, over longer time scales (∼10–25 ka), domain-specific intrusive-to-extrusive ratios do not appear to be fixed in space, resulting in a fairly consistent volcanic accretion over the length scale of the second-order ridge segment between 9°N and 10°N.
    Beschreibung: This work was supported by NSF grants OCE-0525863 to D. Fornari and S. A. Soule; OCE-0732366 to S. A. Soule; and OCE-9819261 to H. Schouten, M. Tivey, and D. Fornari and by CNRS to J. Escartın.
    Schlagwort(e): Mid-ocean ridge ; Submarine volcanism ; Diking ; Seafloor morphology ; Magmatism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 3945–3961, doi:10.1029/2018GC007632.
    Beschreibung: To investigate the initial phases of magmatism at the leading edge of the upwelling mantle plume, we mapped, photographed, and collected samples from two long, deep‐water lava flows located at the western base of the Galápagos Platform using the remotely operated vehicle Hercules. Lavas were recovered from four areas on the seafloor west of Fernandina volcano, including the western flow fronts of two deep‐water flows, heavily sedimented terrain between the two flows, and the eastern, shallower end of one flow. The sediment cover and morphologies are distinct between the western flow fronts and the eastern region based on seafloor imagery, suggesting that the long lava flows are not a single eruptive unit. Major and trace element concentrations reveal both tholeiitic and alkalic compositions and support the interpretation that multiple eruptive units comprise the deep‐water flows. Alkalic lavas have higher [La/Sm]N ratios (2.05–2.12) and total alkali contents (5.18–5.40) compared to tholeiitic lavas, which have [La/Sm]N ratios ranging from 1.64 to 1.68 and total alkali contents ranging from 3.07 to 4.08 wt%. Radiogenic isotope ratios are relatively homogeneous, suggesting a similar mantle source. We use petrologic models to assess three alternative mechanisms for the formation of the alkalic magmas: (1) high‐pressure crystallization of clinopyroxene, (2) mixing of high silica and mafic magmas, and (3) variable extents of melting of the same mantle source. Our modeling indicates that the alkalic samples form from lower extents of melting compared to the tholeiitic lavas and suggests that the deep‐water alkalic lavas are analogous to the initial, preshield building phase observed south of Hawaii and at the base of Loihi Seamount.
    Beschreibung: Dalio Explorer Fund; National Science Foundation (NSF) Grant Number: OCE‐1634952
    Beschreibung: 2019-04-25
    Schlagwort(e): Submarine volcanism ; Galápagos ; Alkalic magmatism ; Mantle plume ; Mantle melting ; Radiogenic isotopes
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04015, doi:10.1029/2007GC001611.
    Beschreibung: Near-bottom magnetic data collected along the crest of the East Pacific Rise between 9°55′ and 9°25′N identify the Central Anomaly Magnetization High (CAMH), a geomagnetic anomaly modulated by crustal accretionary processes over timescales of ∼104 years. A significant decrease in CAMH amplitude is observed along-axis from north to south, with the steepest gradient between 9°42′ and 9°36′N. The source of this variation is neither a systematic change in geochemistry nor varying paleointensity at the time of lava eruption. Instead, magnetic moment models show that it can be accounted for by an observed ∼50% decrease in seismic Layer 2A thickness along-axis. Layer 2A is assumed to be the extrusive volcanic layer, and we propose that this composes most of the magnetic source layer along the ridge axis. The 9°37′N overlapping spreading center (OSC) is located at the southern end of the steep CAMH gradient, and the 9°42′–9°36′N ridge segment is interpreted to be a transition zone in crustal accretion processes, with robust magmatism north of 9°42′N and relatively low magmatism at present south of 9°36′N. The 9°37′N OSC is also the only bathymetric discontinuity associated with a shift in the CAMH peak, which deviates ∼0.7 km to the west of the axial summit trough, indicating southward migration of the OSC. CAMH boundaries (defined from the maximum gradients) lie within or overlie the neovolcanic zone (NVZ) boundaries throughout our survey area, implying a systematic relationship between recent volcanic activity and CAMH source. Maximum flow distances and minimum lava dip angles are inferred on the basis of the lateral distance between the NVZ and CAMH boundaries. Lava dip angles average ∼14° toward the ridge axis, which agrees well with previous observations and offers a new method for estimating lava dip angles along fast spreading ridges where volcanic sequences are not exposed.
    Beschreibung: The research project was funded by National Science Foundation under grants OCE-9819261 and OCE- 0096468.
    Schlagwort(e): East Pacific Rise ; Magnetic anomalies ; Mid-ocean ridges ; Volcanic processes ; Magnetic source layer
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q03015, doi:10.1029/2007GC001795.
    Beschreibung: New multibeam bathymetric and side-scan sonar data from the southwestern edge of the Galápagos platform reveal the presence of ∼60 large, stepped submarine terraces between depths of 800 m and 3500 m. These terraces are unique features, as none are known from any other archipelago that share this geomorphic form or size. The terraces slope seaward at 〈2° and are surrounded by escarpments that average ∼300 m in height with average slopes of 24°. The stepped morphology, fine-scale features, and sinuous planform continuity of terrace edges indicate that each terrace results from a sequence of major submarine volcanic eruptions, similar in extent to young deep-water (〉3000 m) lava flow fields west of Fernandina and Isabela Islands. The terraces are formed of thick sequences of lava flows that coalesce to form the foundation of the Galápagos platform, on which the subaerial central volcanoes are built. The compositions of basalts dredged from the submarine terraces indicate that most lavas are chemically similar to subaerial lavas erupted from Sierra Negra volcano on southern Isabela Island. There are no regular major element, trace element, or isotopic variations in the submarine lavas as a function of depth, relative stratigraphic position, or geographic location along the southwest margin of the platform. We hypothesize that magma supply at the western edge of the Galápagos hot spot, which is influenced by both plume and mid-ocean ridge magmatic processes, leads to episodic eruption of large lava flows. These large lava flows coalesce to form the archipelagic apron upon which the island volcanoes are built.
    Beschreibung: This work was supported by the National Science Foundation grants OCE0002818 and EAR0207605 (D.G.), OCE0002461 (D.J.F. and M.K.), OCE05-25864 (M.K.), and EAR0207425 (K.H.).
    Schlagwort(e): Submarine volcanism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q01006, doi:10.1029/2006GC001333.
    Beschreibung: Recent advances in underwater vehicle navigation and sonar technology now permit detailed mapping of complex seafloor bathymetry found at mid-ocean ridge crests. Imagenex 881 (675 kHz) scanning sonar data collected during low-altitude (~5 m) surveys conducted with DSV Alvin were used to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR) Ridge2000 Integrated Study Site (9°50′N, “bull's-eye”). Data were collected during 29 dives in 2004 and 2005 and were merged through a grid rectification technique to create high-resolution (0.5 m grid) composite maps. These are the first submeter bathymetric maps generated with a scanning sonar mounted on Alvin. The composite maps can be used to quantify the dimensions of meter-scale volcanic and hydrothermal features within the EPR axial summit trough (AST) including hydrothermal vent structures, lava pillars, collapse areas, the trough walls, and primary volcanic fissures. Existing Autonomous Benthic Explorer (ABE) bathymetry data (675 kHz scanning sonar) collected at this site provide the broader geologic context necessary to interpret the meter-scale features resolved in the composite maps. The grid rectification technique we employed can be used to optimize vehicle time by permitting the creation of high-resolution bathymetry maps from data collected during multiple, coordinated, short-duration surveys after primary dive objectives are met. This method can also be used to colocate future near-bottom sonar data sets within the high-resolution composite maps, enabling quantification of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes.
    Beschreibung: This work was supported by an NSF Ridge2000 fellowship to V.L.F. and a Woods Hole Oceanographic Institution fellowship supported by the W. Alan Clark Senior Scientist Chair (D.J.F.). Funding was also provided by the Censsis Engineering Research Center of the National Science Foundation under grant EEC-9986821. Support for field and laboratory studies was provided by the National Science Foundation under grants OCE-9819261 (D.J.F. and M.T.), OCE-0096468 (D.J.F. and T.S.), OCE-0328117 (SMC), OCE-0525863 (D.J.F. and S.A.S.), OCE-0112737 ATM-0427220 (L.L.W.), and OCE- 0327261 and OCE-0328117 (T.S.). Additional support was provided by The Edwin Link Foundation (J.C.K.).
    Schlagwort(e): High-resolution bathymetry ; Near-bottom sonar ; East Pacific Rise ; Ridge2000
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: 5546372 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06005, doi:10.1029/2006GC001399.
    Beschreibung: The distribution of faults and fault characteristics along the East Pacific Rise (EPR) crest between 9°25′N and 9°58′N were studied using high-resolution side-scan sonar data and near-bottom bathymetric profiles. The resulting analysis shows important variations in the density of deformational features and tectonic strain estimates at young seafloor relative to older, sediment-covered seafloor of the same spreading age. We estimate that the expression of tectonic deformation and associated strain on “old” seafloor is ~5 times greater than that on “young” seafloor, owing to the frequent fault burial by recent lava flows. Thus the unseen, volcanically overprinted tectonic deformation may contribute from 30% to 100% of the ~300 m of subsidence required to fully build up the extrusive pile (Layer 2A). Many longer lava flows (greater than ~1 km) dam against inward facing fault scarps. This limits their length at distances of 1–2 km, which are coincident with where the extrusive layer acquires its full thickness. More than 2% of plate separation at the EPR is accommodated by brittle deformation, which consists mainly of inward facing faults (~70%). Faulting at the EPR crest occurs within the narrow, ~4 km wide upper crust that behaves as a brittle lid overlying the axial magma chamber. Deformation at greater distances off axis (up to 40 km) is accommodated by flexure of the lithosphere due to thermal subsidence, resulting in ~50% inward facing faults accommodating ~50% of the strain. On the basis of observed burial of faults by lava flows and damming of flows by fault scarps, we find that the development of Layer 2A is strongly controlled by low-relief growth faults that form at the ridge crest and its upper flanks. In turn, those faults have a profound impact on how lava flows are distributed along and across the ridge crest.
    Beschreibung: The field and laboratory studies were supported by NSF grants OCE-9819261 (to H.S., M.A.T., and D.J.F.), OCE-0525863 (D.J.F. and S.A.S.), OCE-0138088 (M.P.), WHOI Vetlesen Foundation Funds (J.E., D.J.F., and S.A.S.). Additional support by INSU/CNRS to J.E. is also acknowledged.
    Schlagwort(e): Faulting ; Volcanism ; Mid-ocean ridge ; East Pacific Rise ; Tectonic strain
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B03104, doi:10.1029/2005JB003796.
    Beschreibung: Laboratory simulations using polyethylene glycol (PEG) extruded at a constant rate and temperature into a tank with a uniform basal slope and filled with a cold sucrose solution generate channels that are defined by stationary levees and mobile flow interiors. These laboratory channels consistently display the following surface textures in the channel: smooth, folded, lineated, and chaotic. In the simulations, we can observe specific local conditions including flow rate, position within the channel, and time that combine to develop each texture. The textures in PEG flows form due to relative differences in shear forces between the PEG crust and the underlying liquid wax. Minimal shear forces form smooth crust, whereas folded crust forms when the shear is sufficiently high to cause ductile deformation. Brittle deformation of solid PEG creates a chaotic texture, and lineated crust results from shear forces along the channel-levee margin. We observe similar textures in submarine lava channels with sources at or near the Axial Summit Trough of the East Pacific Rise between 9° and 10°N. We mapped the surface textures of nine submarine lava channels using high-resolution digital images collected during camera tows. These textural maps, along with observations of the formation of similar features in analog flows, reveal important information about the mechanisms occurring across the channel during emplacement, including relative flow velocity and shear stress.
    Beschreibung: The cruise was funded by a grant to WHOI from the National Science Foundation (NSF) OCE-9819261, with additional funding provided by WHOI thorough the Vetlesen Foundation. The PEG experiments were funded by NSF OCE-0425073 in a grant to Tracy Gregg.
    Schlagwort(e): East Pacific Rise ; Polyethylene glycol (PEG) ; Lava channels
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q05001, doi:10.1029/2005GC001086.
    Beschreibung: A 2002 multibeam sonar survey of Mauna Loa’s western flank revealed ten submarine radial vents and three submarine lava flows. Only one submarine radial vent was known previously. The ages of these vents are constrained by eyewitness accounts, geologic relationships, Mn-Fe coatings, and geochemical stratigraphy; they range from 128 years B.P. to possibly 47 ka. Eight of the radial vents produced degassed lavas despite eruption in water depths sufficient to inhibit sulfur degassing. These vents formed truncated cones and short lava flows. Two vents produced undegassed lavas that created ‘‘irregular’’ cones and longer lava flows. Compositionally and isotopically, the submarine radial vent lavas are typical of Mauna Loa lavas, except two cones that erupted alkalic lavas. He-Sr isotopes for the radial vent lavas follow Mauna Loa’s evolutionary trend. The compositional and isotopic heterogeneity of these lavas indicates most had distinct parental magmas. Bathymetry and acoustic backscatter results, along with photography and sampling during four JASON2 dives, are used to produce a detailed geologic map to evaluate Mauna Loa’s submarine geologic history. The new map shows that the 1877 submarine eruption was much larger than previously thought, resulting in a 10% increase for recent volcanism. Furthermore, although alkalic lavas were found at two radial vents, there is no systematic increase in alkalinity among these or other Mauna Loa lavas as expected for a dying volcano. These results refute an interpretation that Mauna Loa’s volcanism is waning. The submarine radial vents and flows cover 29 km2 of seafloor and comprise a total volume of ~2 x 109 m3 of lava, reinforcing the idea that submarine lava eruptions are important in the growth of oceanic island volcanoes even after they emerged above sea level.
    Beschreibung: This project was funded by NSF grants OCE-97-29894 to M.G. and OCE-9818744 to J.M.R.
    Schlagwort(e): Hawaii ; Mauna Loa ; Submarine volcanism ; Radial vents ; Bathymetry ; Igneous petrology
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: 10619596 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...