GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Composite three-dimensional structure  (1)
  • Jets  (1)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1764-1779, doi:10.1175/2008JPO3921.1.
    Beschreibung: Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (145°E) and the Shatsky Rise (156°E), and bordered to the north by the subarctic boundary along 40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.
    Beschreibung: This study was supported by NSF through Grant OCE-0220680 (UH) and OCE-0220161 (WHOI).
    Schlagwort(e): Gyres ; Ocean circulation ; Profilers ; Jets ; Transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC016922, https://doi.org/10.1029/2020JC016922.
    Beschreibung: Mesoscale eddies redistribute heat, salt, and nutrients in oceans. The South Atlantic Ocean (SA) is a basin that has active mesoscale eddies for which characteristics of the three-dimensional structure and its leading mechanism are complex but have yet been studied sufficiently. Here based on ocean reanalysis datasets we use a composite analysis approach to analyze the mixed layer anomalous heat budget and find distinct two types of spatial patterns: dipole and monopole – mainly present in the northern and southern regions of the SA, respectively. The dipole can be attributed to ocean horizontal advection, especially to the combined effect of eddy anomalous meridional current and meridional gradient of mean temperature. The monopole, on the other hand, is associated with complex contributions, for which zonal and meridional advections play opposite roles as cooling or heating around the eddies. At the eddy center, the vertical advection is non-negligible, especially the mean upwelling and vertical temperature gradient playing a vital role in the formation of a monopole. The analysis of eddy meridional heat transport shows that the stirring component is dominant, and poleward in most areas, especially at high latitudes. Such analysis on the leading mechanism of eddy-induced temperature anomaly could help improve our understanding on meso- and small-scale air-sea interactions and eddy-induced heat transport in the SA.
    Beschreibung: This work is supported by the National Key R&D Program of China (2017YFC1404100 and 2017YFC1404104) and the National Natural Science Foundation of China (Grant No. 41775100, 41830964) as well as Shandong Province’s “Taishan” Scientist Program and Qingdao “Creative and Initiative” frontier Scientist Program. This research is also supported by the Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao).
    Schlagwort(e): Composite three-dimensional structure ; Eddy heat transport ; Mesoscale eddies ; Mixed layer heat budget ; South Atlantic Ocean
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...