GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da Cunha, L. C., Mcphaden, M. J., Araujo, M., Karstensen, J., Hahn, J., Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez, R. C., Hatje, V., Luebbecke, J. F., Palo, I., Lumpkin, R., Bourles, B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S. A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B., Gaye, A. T., Lopez-Paragess, J., Monerie, P., Castellanos, P., Benson, N. U., Hounkonnou, M. N., Trotte Duha, J., Laxenairess, R., & Reul, N. The tropical Atlantic observing system. Frontiers in Marine Science, 6(206), (2019), doi:10.3389/fmars.2019.00206.
    Description: he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Description: MM-R received funding from the MORDICUS grant under contract ANR-13-SENV-0002-01 and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). GF, MG, RLu, RP, RW, and CS were supported by NOAA/OAR through base funds to AOML and the Ocean Observing and Monitoring Division (OOMD; fund reference 100007298). This is NOAA/PMEL contribution #4918. PB, MDe, JH, RH, and JL are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. German participation is further supported by different programs funded by the Deutsche Forschungsgemeinschaft, the Deutsche Bundesministerium für Bildung und Forschung (BMBF), and the European Union. The EU-PREFACE project funded by the EU FP7/2007–2013 programme (Grant No. 603521) contributed to results synthesized here. LCC was supported by the UERJ/Prociencia-2018 research grant. JOS received funding from the Cluster of Excellence Future Ocean (EXC80-DFG), the EU-PREFACE project (Grant No. 603521) and the BMBF-AWA project (Grant No. 01DG12073C).
    Keywords: Tropical Atlantic Ocean ; Observing system ; Weather ; Climate ; Hurricanes ; Biogeochemistry ; Ecosystems ; Coupled model bias
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sloyan, B. M., Wilkin, J., Hill, K. L., Chidichimo, M. P., Cronin, M. F., Johannessen, J. A., Karstensen, J., Krug, M., Lee, T., Oka, E., Palmer, M. D., Rabe, B., Speich, S., von Schuckmann, K., Weller, R. A., & Yu, W. Evolving the physical global ocean observing system for research and application services through international coordination. Frontiers in Marine Science, 6, (2019): 449, doi:10.3389/fmars.2019.00449.
    Description: Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean’s role in the Earth’s climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land, and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon, and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean’s biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs’99 to OceanObs’09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements.
    Description: BS received support from the Centre for Southern Hemisphere Oceans Research, a collaboration between the CSIRO and the Qingdao National Laboratory for Marine Science and Technology and the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. JK was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement no. 633211 (AtlantOS). MP was supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra. SS was supported by the Ecole Normale Supérieure, CNRS, and Ifremer funded by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement no. 633211 (AtlantOS), CNES, and ANR grants.
    Keywords: Observing system evaluation ; Observing system design ; Sustained observations ; Observing networks ; Observation platforms ; Climate ; Weather ; Operational services
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...