GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cholecystokinin  (1)
  • Oxytocin  (1)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Opioid peptides ; Neurohypophysis ; Nerve endings ; Vasopressin ; Oxytocin ; Calcium ; Release ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Rat neural lobes and isolated nerve terminals from the neurohypophysis were stimulated in the presence of different opioid agonists and antagonists. The secretion of arginine vasopressin and oxytocin and rise in cytoplasmic calcium induced by depolarization were analyzed by radioimmunoassay and the fluorescent probe fura-2, respectively. The kappa-agonists dynorphin A1 -13 and dynorphin A1 -8 did not affect electrically evoked release of vasopressin, although oxytocin release was slightly reduced. U-50 488, a relatively specific kappa-receptor agonist, had no effect on the amount of vasopressin or oxytocin secreted, although it significantly reduced K+-evoked changes in [Ca2+]i in isolated nerve endings. Two kappa-receptor antagonists, MR 2266 and diprenorphin, alone had no effect on vasopressin and oxytocin secretion from isolated nerve endings depolarized with potassium. Opioid agonists less selective for the kappa receptors, etorphin and ethylketocyclazocin, were found to inhibit the release of both vasopressin and oxytocin significantly. Naloxone, a nonselective opiate receptor antagonist, alone had no effect on vasopressin release but potentiated the electrically evoked release of oxytocin. Naloxone also could overcome the inhibitory effect of etorphin on oxytocin and vasopressin release observed after electrical stimulation of the neural lobe. A number of inconsistencies therefore exist between the effects of opioid agonists and antagonists on neuropeptide release and on the evoked changes in [Ca2+]i. In view of these inconsistencies and the high concentrations of opioid agonists and antagonists necessary to modify release, we conclude that it is doubtful that opioid molecules have a physiological role in controlling neurohypophysial secretion.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 416 (1990), S. 652-658 
    ISSN: 1432-2013
    Schlagwort(e): Pancreatic ducts ; Intracellular calcium ; Carbachol ; Secretin ; Cholecystokinin ; Acetylcholine ; Bicarbonate secretion
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Regulation of intracellular free calcium ([Ca2+]i) in single epithelial duct cells of isolated rat and guinea pig pancreatic interlobular ducts by secretin, carbachol and cholecystokinin was studied by microspectrofluorometry using the Ca2+-sensitive, fluorescent probe Fura-2. Rat and guinea pig duct cells exhibited mean resting [Ca2+]i of 84 nM and 61 nM, respectively, which increased by 50%–100% in response to carbachol stimulation, thus demonstrating the presence of physiologically responsive cholinergic receptors in pancreatic ducts of both species. The carbachol-induced increase in [Ca2+]i involved both mobilization of Ca2+ from intracellular stores and stimulation of influx of extracellular Ca2+. In contrast, neither cholecystokinin nor secretin showed reproducible or sizeable increses in [Ca2+]i. Both rat and guinea pig duct cells showed considerable resting Ca2+ permeability. Lowering or raising the extracellular [Ca2+]i led, respectively, to a decrease or increase in the resting [Ca2+]i. Application of Mn2+ resulted in a quenching of the fluorescence signal indicating its entry into the cell. The resting Ca2+ and Mn2+ permeability could be blocked by La3+ suggesting that it is mediated by a Ca2+ channel.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...