GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Chemistry, Technical.  (1)
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Chemistry, Technical. ; Chemistry. ; Organic compounds -- Synthesis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (423 pages)
    Ausgabe: 1st ed.
    ISBN: 9783527677917
    DDC: 547.413
    Sprache: Englisch
    Anmerkung: Intro -- Modern Alkyne Chemistry -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction -- 1.1 History of Alkynes -- 1.2 Structure and Properties of Alkynes -- 1.3 Classical Reactions of Alkynes -- 1.4 Modern Reactions -- 1.5 Conclusion -- References -- Part I Catalytic Isomerization of Alkynes -- Chapter 2 Redox Isomerization of Propargyl Alcohols to Enones -- 2.1 Introduction -- 2.2 Base Catalysis -- 2.3 Ru Catalyzed -- 2.4 Rh Catalysis -- 2.5 Palladium Catalysis -- 2.6 Miscellaneous -- 2.7 Conclusions -- References -- Chapter 3 Carbophilic Cycloisomerization Reactions of Enynes and Domino Processes -- 3.1 Introduction and Reactivity Principles -- 3.1.1 The Reactivity of Carbophilic Lewis Acids in the Presence of Enyne Substrates -- 3.2 Skeletal Rearrangement Reactions in the Absence of Nucleophiles -- 3.2.1 Synthesis of Dienes (1,3- and 1,4-Dienes) -- 3.2.2 Cycloisomerization Reactions Involving Activated Alkene Partners: Conia-Ene Reaction and Related Transformations -- 3.2.3 Formation of Bicyclic Derivatives -- 3.2.3.1 Formation of Bicyclopropanes -- 3.2.3.2 Formation of Bicyclobutenes -- 3.2.3.3 Formation of Larger Rings via Cycloisomerization-Rearrangements -- 3.3 Enyne Domino Processes -- 3.3.1 Domino Enyne Cycloisomerization-Nucleophile Addition Reactions -- 3.3.1.1 Oxygen and Nitrogen Nucleophiles -- 3.3.1.2 Carbon Nucleophiles -- 3.4 Conclusion -- References -- Chapter 4 Alkyne Metathesis in Organic Synthesis -- 4.1 Introduction -- 4.2 Mechanistic Background and Classical Catalyst Systems -- 4.3 State-of-the-Art Catalysts -- 4.4 Basic Reaction Formats and Substrate Scope -- 4.5 Selected Applications -- 4.5.1 Dehydrohomoancepsenolide -- 4.5.2 Olfactory Macrolides -- 4.5.3 Haliclonacyclamine C -- 4.5.4 Hybridalactone -- 4.5.5 Cruentaren A -- 4.5.6 The Tubulin-Inhibitor WF-1360F -- 4.5.7 Neurymenolide A. , 4.5.8 Leiodermatolide -- 4.5.9 Tulearin C -- 4.5.10 The Antibiotic A26771B -- 4.5.11 Lactimidomycin -- 4.5.12 Citreofuran -- 4.5.13 Polycavernoside -- 4.5.14 Amphidinolide F -- 4.5.15 Spirastrellolide F Methyl Ester -- 4.6 Conclusions -- References -- Part II Catalytic Cycloaddition Reactions -- Chapter 5 Alkyne-Azide Reactions -- 5.1 Introduction -- 5.2 Reviews on Cu-Catalyzed Azide-Alkyne Cycloaddition -- 5.3 Mechanistic Considerations on the Cu(1) Catalysis -- 5.4 The Substrates for CuAAC -- 5.5 The Environment -- 5.6 Modified 1,2,3-Triazoles and CuAAC Side Reactions -- 5.6.1 Oxidative Couplings of Cu(1)-Triazole Complexes -- 5.6.2 Reactions in the 5-Position of Triazoles -- 5.6.3 Side Reactions due to Substrate Instability -- 5.7 The Catalyst -- 5.7.1 Recent Ligands and their Influence on Cu(1) Catalysis -- 5.7.2 Catalyst Structure-Activity Relationship -- 5.7.3 In Situ Generated CuAAC: Electro-, Photo-, and Self-Induced ``Click'' -- 5.8 Optimizing Conditions for CuAAC Reactions -- 5.9 CuAAC in Biological Applications -- 5.10 Biocompatibility of the CuAAC Reaction -- References -- Chapter 6 Catalytic Cycloaddition Reactions -- 6.1 Introduction -- 6.2 (2+2) Cycloaddition -- 6.3 (3+2) and (2+1) Cycloaddition -- 6.4 (4+2) Cycloaddition -- 6.5 (5+1) and (4+1) Cycloadditions -- 6.6 (5+2) Cycloaddition -- 6.7 (6+2) Cycloaddition -- 6.8 (2+2+1) Cycloaddition -- 6.9 (2+2+2) Cycloaddition -- 6.10 (3+2+1) Cycloaddition -- 6.11 (3+2+2) Cycloaddition -- 6.12 (4+2+1) and (4+2+2) Cycloaddition -- 6.13 (4+3+2) Cycloaddition -- 6.14 (5+2+1) and (5+1+2+1) Cycloadditions -- 6.15 (2+2+1+1) and (2+2+2+1) Cycloadditions -- 6.16 (2+2+2+2) Cycloaddition -- 6.17 Conclusions -- References -- Part III Catalytic Nucleophilic Additions and Substitutions -- Chapter 7 Catalytic Conjugate Additions of Alkynes -- 7.1 Introduction -- 7.2 Metal Alkynylides as Nucleophiles. , 7.2.1 Conjugate Addition of Metal Alkynylides -- 7.2.1.1 Conjugate Addition of Metal Alkynylides to s-cis α,β-Enones -- 7.2.1.2 Conjugate Addition of Metal Alkynylides with a Catalytic Promoter -- 7.2.1.3 Conjugate Addition of Metal Alkynylides with Stoichiometric Promoters -- 7.2.2 Enantioselective Conjugate Addition of Metal Alkynylides -- 7.2.2.1 Use of a Stoichiometric Amount of Chiral Sources -- 7.2.2.2 Catalytic Enantioselective Conjugate Addition of Metal Alkynylides -- 7.3 Direct Use of Terminal Alkynes as Pronucleophiles -- 7.3.1 Direct Catalytic Conjugate Addition of Terminal Alkynes -- 7.3.1.1 Introduction -- 7.3.1.2 Addition to Vinyl Ketones and Acrylates -- 7.3.1.3 Addition to β-Substituted α,β-Enones -- 7.3.2 Enantioselective Direct Catalytic Conjugate Addition of Terminal Alkynes -- 7.4 Summary and Conclusions -- References -- Chapter 8 Catalytic Enantioselective Addition of Terminal Alkynes to Carbonyls -- 8.1 Introduction -- 8.2 Metallation of Terminal Alkynes: Formation of Alkynyl Nucleophiles -- 8.2.1 Deprotonation of Terminal Alkynes -- 8.2.2 Oxidative Insertion and Ligand Exchange: Formal Metallation of Terminal Alkynes -- 8.3 Ligand-Catalyzed Alkyne Additions with Stoichiometric Quantities of Metal -- 8.3.1 Addition of Alkynylzinc Nucleophiles to Aldehydes, Ketones, and Imines -- 8.3.2 Titanium-Catalyzed Alkynylation of Aldehydes and Ketones -- 8.3.3 Asymmetric Boron-Catalyzed Alkyne Additions to Aldehydes -- 8.4 Alkyne Additions with Catalytic Amounts of Metal -- 8.4.1 Asymmetric Alkyne Additions to Aldehydes and Ketones Catalyzed by Zinc Salts -- 8.4.2 Indium-Catalyzed Alkyne Additions to Aldehydes -- 8.4.3 Chromium-Catalyzed Alkynylation of Aldehydes with Haloacetylenes -- 8.4.4 Copper-Catalyzed Alkynylation of Aldehydes and Trifluoromethyl Ketones. , 8.4.5 Palladium-Catalyzed Additions to α,β-Unsaturated Carbonyls and Trifluoropyruvate -- 8.4.6 Enantioselective Ruthenium-Catalyzed Alkynylation of Aldehydes -- 8.4.7 Rhodium-Catalyzed Alkynylation of α-Ketoesters -- 8.5 Concluding Remarks -- References -- Chapter 9 Catalytic Nucleophilic Addition of Alkynes to Imines: The A3 (Aldehyde-Alkyne-Amine) Coupling -- 9.1 A3 Couplings Involving Primary Amines -- 9.2 A3 Couplings Involving Secondary Amines -- 9.3 Alkyne Additions with Reusable Catalysts -- 9.4 Asymmetric Alkyne Addition Reactions -- 9.4.1 Asymmetric A3-Type Couplings with Primary Amines -- 9.4.2 Asymmetric A3-Type Couplings with Secondary Amines -- 9.5 Alkyne Additions to Imines in Tandem Reactions -- 9.5.1 A3 Coupling with Tandem Cycloisomerizations Involving the Alkyne Triple Bond -- 9.5.2 Tandem Processes Involving Other Transformations of the Alkyne Triple Bond -- 9.5.3 Tandem Processes Involving Decarboxylations -- 9.5.4 Tandem Processes Involving Both the Amine and the Alkyne -- 9.6 Conclusion -- References -- Chapter 10 The Sonogashira Reaction -- 10.1 Introduction -- 10.2 Palladium-Phosphorous Catalysts -- 10.2.1 Unsupported Palladium-Phosphorous Catalysts -- 10.2.1.1 Copper-Cocatalyzed Reactions -- 10.2.1.2 Copper-Free Reactions -- 10.2.2 Supported Palladium-Phosphorous Catalysts -- 10.2.2.1 Copper-Cocatalyzed Reactions -- 10.2.2.2 Copper-Free Reactions -- 10.3 Palladium-Nitrogen Catalysts -- 10.3.1 Unsupported Palladium-Nitrogen Catalysts -- 10.3.2 Supported Palladium-Nitrogen Catalysts -- 10.4 N-Heterocyclic Carbene (NHC)-Palladium Catalysts -- 10.4.1 Unsupported NHC-Palladium Catalysts -- 10.4.2 Supported NHC-Palladium Catalysts -- 10.5 Palladacycles as Catalysts -- 10.5.1 Unsupported Palladacycles as Catalysts -- 10.5.2 Supported Palladacycles as Catalysts -- 10.6 Ligand-Free Palladium Salts as Catalysts. , 10.6.1 Unsupported Ligand-Free Palladium Salts as Catalysts -- 10.6.2 Supported Ligand-Free Palladium Salts as Catalysts -- 10.7 Palladium Nanoparticles as Catalysts -- 10.7.1 Unimmobilized Palladium Nanoparticles as Catalysts -- 10.7.2 Immobilized Palladium Nanoparticles as Catalysts -- 10.7.2.1 Copper-Cocatalyzed Reactions -- 10.7.2.2 Copper-Free Reactions -- 10.8 Non-Palladium-Based Catalysts -- 10.9 Mechanistic Considerations -- 10.10 Summary and Conclusions -- References -- Part IV Other Reactions -- Chapter 11 Catalytic Dimerization of Alkynes -- 11.1 Introduction -- 11.2 Dimerization of Alkynes Catalyzed by Iron, Ruthenium, and Osmium Complexes -- 11.2.1 Homo-Coupling of Terminal Alkynes -- 11.2.2 Cross-Dimerization of Alkynes -- 11.3 Dimerization of Alkynes Catalyzed by Cobalt, Rhodium, and Iridium Complexes -- 11.3.1 Homo-Coupling of Terminal Alkynes -- 11.3.2 Cross-Dimerization of Alkynes -- 11.4 Dimerization of Alkynes Catalyzed by Nickel, Palladium, and Platinum Complexes -- 11.4.1 Homo-Coupling of Terminal Alkynes -- 11.4.2 Cross-Dimerization of Alkynes -- 11.5 Dimerization of Alkynes Catalyzed by Group 3, Lanthanide, and Actinide Complexes -- 11.6 Dimerization of Alkynes Catalyzed by Titanium, Zirconium, and Hafnium Complexes -- 11.7 Dimerization of Alkynes Catalyzed by Other Compounds -- 11.8 Summary and Conclusions -- Acknowledgments -- References -- Chapter 12 The Oxidative Dimerization of Acetylenes and Related Reactions: Synthesis and Applications of Conjugated 1,3-Diynes -- 12.1 Introduction -- 12.2 Syntheses of Conjugated 1,3-Diynes -- 12.3 Scope and Limitation of the Alkyne Dimerization Reaction -- 12.3.1 Choice of Copper Salt -- 12.3.2 Choice of Solvent -- 12.3.3 Substituents on the Alkyne and Basic Additives -- 12.3.4 Additional Metals -- 12.4 Scope and Limitation of Copper-Catalyzed Hetero-Coupling Reactions. , 12.5 The Cadiot-Chodkiewicz Reaction.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...