GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ANT-XXIV/2; Arctic Ocean; ARK-XXII/2; AWI_Paleo; BC; Box corer; Center for Marine Environmental Sciences; Cruise/expedition; Date/Time of event; Davis Strait; Elevation of event; Event label; Galathea_3_Win3; Galathea_3_Win4; Galathea_3_Win6; Galathea 3; HDMS Vaedderen; KT07-14; KT07-14_MC03; KT07-14_MC04; KT07-14_MC07; Latitude of event; Longitude of event; Maria S. Merian; MARUM; MC03; MC04; MC07; MSM09/2; MSM09/2_432-5; MSM09/2_453-7; MSM09/2_472-2; MUC; MultiCorer; Name; Number of e-ribotype; Number of genotype; Number of morphospecies; Number of sequences; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS70/239-6; PS70/265-1; PS70/265-2; PS70/299-2; PS70/309-8; PS70 SPACE DAMOCLES; PS71/033-12; PS71/085-5; PS71/085-7; PS71 ANDEEP-SYSTCO SCACE; Reads; Reference/source; Sediment type; South Atlantic Ocean; Station label; Tansei Maru; Weddell Sea; Win 3; Win 4; Win 6  (1)
  • Center for Marine Environmental Sciences; Foraminifera; MARUM; Metabarcoding; microfossils; North Atlantic; sedimentary ancient DNA  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-02-14
    Description: Environmental DNA (eDNA) metabarcoding of marine sediments has revealed large amounts of sequences assigned to planktonic taxa. How this planktonic eDNA is delivered on the seafloor and preserved in the sediment is not well understood. We address these questions by comparing metabarcoding and microfossil foraminifera assemblages in sediment cores taken off Newfoundland across a strong ecological gradient. We detected planktonic foraminifera eDNA down to 30 cm and observed that the planktonic/benthic amplicon ratio changed with depth. The relative proportion of planktonic foraminiferal amplicons remained low from the surface down to 10 cm, likely due to the presence of DNA from living benthic foraminifera. Below 10 cm, the relative proportion of planktonic foraminifera amplicons rocketed, likely reflecting the higher proportion of planktonic eDNA in the DNA burial flux. In addition, the microfossil and metabarcoding assemblages showed a congruent pattern indicating that planktonic foraminifera eDNA is deposited without substantial lateral advection and preserves regional biogeographical patterns, indicating deposition by a similar mechanism as the foraminiferal shells. Our study shows that the planktonic eDNA preserved in marine sediments has the potential to record climatic and biotic changes in the pelagic community with the same spatial and temporal resolution as microfossils.
    Keywords: Center for Marine Environmental Sciences; Foraminifera; MARUM; Metabarcoding; microfossils; North Atlantic; sedimentary ancient DNA
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Morard, Raphael; Lejzerowicz, Franck; Darling, Kate F; Lecroq-Bennet, Beatrice; Pedersen, Mikkel Winther; Orlando, Ludovic; Pawlowski, Jan; Mulitza, Stefan; De Vargas, Colomban; Kucera, Michal (2017): Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology. Biogeosciences, 14, 2741-2754, https://doi.org/10.5194/bg-14-2741-2017
    Publication Date: 2024-02-02
    Description: Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA) in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (〈10 %) of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of the entire pelagic community, including non-fossilized taxa, thus opening new avenues for paleoceanographic and paleoecological studies.
    Keywords: ANT-XXIV/2; Arctic Ocean; ARK-XXII/2; AWI_Paleo; BC; Box corer; Center for Marine Environmental Sciences; Cruise/expedition; Date/Time of event; Davis Strait; Elevation of event; Event label; Galathea_3_Win3; Galathea_3_Win4; Galathea_3_Win6; Galathea 3; HDMS Vaedderen; KT07-14; KT07-14_MC03; KT07-14_MC04; KT07-14_MC07; Latitude of event; Longitude of event; Maria S. Merian; MARUM; MC03; MC04; MC07; MSM09/2; MSM09/2_432-5; MSM09/2_453-7; MSM09/2_472-2; MUC; MultiCorer; Name; Number of e-ribotype; Number of genotype; Number of morphospecies; Number of sequences; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS70/239-6; PS70/265-1; PS70/265-2; PS70/299-2; PS70/309-8; PS70 SPACE DAMOCLES; PS71/033-12; PS71/085-5; PS71/085-7; PS71 ANDEEP-SYSTCO SCACE; Reads; Reference/source; Sediment type; South Atlantic Ocean; Station label; Tansei Maru; Weddell Sea; Win 3; Win 4; Win 6
    Type: Dataset
    Format: text/tab-separated-values, 496 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...