GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (2)
Document type
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 103 (1980), S. 489-502 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previous studies (J. Biol. Chem, 253: 99-105, 1978) showed that thyrotropin-releasing hormone (TRH) acutely stimulated uridine uptake in pituitary cell (GH4C1) cultures. Studies on the role of protein synthesis in this response to TRH led to the finding that an inhibitor of ribosomal translation, cycloheximide, also stimulated uridine uptake acutely. Studies reported here attempt to determine the mechanism of cycloheximide action and whether cycloheximide and hormone stimulation of uridine uptake occurred by similar pathways. The experiments presented indicate that: (1) seven inhibitors of ribosomal translation stimulated uridine uptake; (2) in contrast, inhibition of protein synthesis at tRNA aminoacylation resulted in reduced rates of uridine uptake; (3) inhibition of tRNA aminoacylation blocked cycloheximide but not TRH stimulation of uptake; (4) cycloheximide stimulation of uptake was restricted to amino acid-depleted cultures; (5) amino acid supplementation stimulated uridine uptake with a time-course identical to that of cycloheximide; (6) cycloheximide and amino acid supplementation promoted reacylation of cellular tRNAs in amino acid-depleted cultures; and (7) cycloheximide stimulation of uridine uptake resulted from enhanced nucleoside phosphorylation rather than increased uridine transport. We conclude that cycloheximide and amino acid stimulation of uridine phosphorylation may be mediated through a common pathway involving the extent of amino-acylation of cellular tRNAs. Furthermore, cycloheximide and TRH stimulate uridine phosphorylation by pathways that are distinguishable. It is apparent that not all cellular effects of cycloheximde can be attributed solely to inhibition of the synthesis of proteins.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 109 (1981), S. 289-297 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: GH pituitary cells have been widely utilized for studies of hormone response mechanisms. Studies reported here were motivated by the desirability of isolating characterized GH clones defective in cyclic AMP synthesis or action. Spontaneously occurring GH1 cell variants resistant to the growthinhibitory effects of cyclic AMP analogs were isolated. Characterization of four variants showed that these were deficient in adenosine kinase and had acquired resistance to the cytotoxic effects of purine nucleoside derivatives formed in the culture medium. A second-stage selection was undertaken with mutagenized adenosine kinase-deficient cells. One 8 Br cAMP-resistant variant was found to have normal cyclic AMP-dependent protein kinase activity but exhibited altered adenylate cyclase activity. Activation of cyclase activity by fluoride, guanyl nucleotides, cholera toxin, and hormone (VIP) was subnormal in the variant. Mndependent cyclase activity was also subnormal, suggesting that the 8 Br cAMP-resistant variant may have a deficiency in the catalytic moiety of adenylate cyclase.Surprisingly, adenosine 3′ :5′ -monophosphate and 5′ -monophosphate derivatives were found to be equally potent in growth-inhibiting adenosine kinasedeficient cells. Cross-resistance to 8 Br AMP was observed in the 8 Br cAMP-resistant variant. We conclude that cyclic AMP derivatives inhibit growth of GH cells by an unanticipated mechanism that is, nonetheless, related to endogenous cyclic AMP synthesis.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...