GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Intracellular calcium ; Volume regulation ; Calcium channel ; Inner medullary collecting duct
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract There is ample evidence of calcium being an intracellular second messenger during volume regulatory processes in various cells including inner medullary collecting duct (IMCD) cells. Therefore, we measured intracellular calcium concentrations (Cai under anisotonic conditions in primary cultures of IMCD cells using the Fura-2 technique. Basal steady-state calcium at 600 mosmol/l was found to be 110±4 nmol/l; n=119. Exposure to hypotonic medium (300 mosmol/l, reduction of sucrose) resulted, within 1 min, in a strong increase in calcium to 563±87 nmol/l (n=7; P〈0.01), followed by a decrease over 4–6 min to twice the initial values. The calcium increase was smaller (260±14 nmol/l; n=5; P〈0.05) when the osmotic pressure was decreased by reducing NaCl instead of sucrose. Stepwise reduction of osmolarity to either 500 or 400 mosmol/l increased calcium by a significantly smaller extent, suggesting a threshold for calcium influx between 400 and 300 mosmol/l. In hypotonic calcium-free solutions no significant increase in calcium was observed. Verapamil (40 μmol/l), D-600 (40 μmol/l), diltiazem (40 μmol/l), and nifedipine (40 μmol/l) inhibited the hypotonically induced calcium influx in decreasing order of potency. Lanthanum (La3+) and gadolinium (Gd3+) had no effect. Membrane depolarization by incubation in potassium-rich solution diminished calcium influx. Preincubation with cytochalasin B (50 μmol/l for 30 min) resulted in a lower basal calcium level and attenuated the calcium increase during hypotonic shock. These results demonstrate an increased calcium influx during hypotonic shock in IMCD cells in culture mediated by channels whose nature (stretch activated and/ or voltage dependent) remains to be determined. The transient increase in Cai in turn may trigger inorganic and organic osmolyte fluxes observed previously.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...