GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Waste products as fuel. ; Biomass energy. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (540 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128235270
    Sprache: Englisch
    Anmerkung: Front Cover -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Waste to energy: an overview by global perspective -- 1.1 Introduction -- 1.2 Potential waste biomass -- 1.2.1 Agricultural and forest residue -- 1.2.2 Industrial waste biomass -- 1.2.3 Municipal waste biomass -- 1.2.4 Micro- and macroalgae waste biomass -- 1.3 Biofuels from waste -- 1.3.1 Biodiesel -- 1.3.2 Bioethanol fermentation -- 1.3.3 Bio-oil and biochar -- 1.3.4 Biomethane and biohydrogen -- 1.3.5 Syngas and bioelectricity -- 1.4 Socioeconomic perspective -- 1.5 Environmental perspective -- 1.6 Integrated approaches of biofuel from waste -- 1.7 Conclusion -- References -- Chapter 2 Potential of advanced photocatalytic technology for biodiesel production from waste oil -- 2.1 Introduction -- 2.1.1 Biodiesel-strength and weakness -- 2.1.2 Biodiesel as an alternative fuel -- 2.1.3 WCO as a feedstock for biodiesel production -- 2.2 Reaction process to produce biodiesel -- 2.2.1 Microemulsion technique -- 2.2.2 Direct use and blending technique -- 2.2.3 Pyrolysis of oil -- 2.2.4 Transesterification process -- 2.2.5 Esterification process -- 2.3 Catalyst for biodiesel production -- 2.4 Photocatalyst -- 2.4.1 Mechanism of photocatalysis -- 2.4.2 Important circumstances influence photocatalyst performance -- 2.4.3 Synthesis of photocatalysts -- 2.5 Fundamental of photocatalyst in biodiesel production -- 2.5.1 TiO2 as a photocatalyst in biodiesel production -- 2.5.2 Zinc oxide \(ZnO\) nanocatalyst as heterogeneous photocatalyst -- 2.6 Parameters affecting on photocatalytic esterification -- 2.6.1 Effect of alcohol to oil ratio -- 2.6.2 Effect of catalyst loading -- 2.6.3 Effect of stirring speed -- 2.6.4 Effect of UV irradiation time and lamp power -- 2.7 Conclusion -- Acknowledgments -- References. , Chapter 3 Biofuel production from food waste biomass and application of machine learning for process management -- 3.1 Introduction -- 3.2 Growing concern for food loss waste (FLW) -- 3.3 Conversion techniques -- 3.3.1 Biochemical technology -- 3.4 Thermochemical technology -- 3.4.1 Gasification -- 3.4.2 Pyrolysis -- 3.4.3 Liquefaction -- 3.5 Sustainable management of FW with machine learning -- 3.5.1 Machine learning overview for FW and biofuel -- 3.6 Prediction of energy demand and biofuel production from FW -- 3.6.1 Life cycle of machine learning-based energy demand and biofuel production -- 3.7 Conclusion -- References -- Chapter 4 Biological conversion of lignocellulosic waste in the renewable energy -- 4.1 Introduction -- 4.2 Lignocellulosic biomass and technical benefits -- 4.3 The role of bacteria in the decomposition of plant biomass and the production of RE -- 4.4 The future of RE and the challenges -- 4.5 Conclusion -- References -- Chapter 5 The potential of sustainable biogas production from animal waste -- 5.1 Introduction -- 5.2 Biogas components -- 5.3 Factors affecting biogas production -- 5.4 Anaerobic fermentation -- 5.4.1 Bacteria -- 5.4.2 Temperature -- 5.4.3 pH -- 5.4.4 Carbon to nitrogen ratio -- 5.4.5 Concentration of the solid in the feeding solution -- 5.4.6 Feeding rates of organic matter (degree of loading) -- 5.4.7 Time of solution remaining in the fermenter -- 5.4.8 Toxic substances in nutrition -- 5.4.9 Use prefixes -- 5.4.10 Flipping inside the fermenter -- 5.5 Environmental and economic benefits from biogas generation -- 5.6 The properties of the different gases compared to the biogas -- 5.7 Prospects for the development of biogas production technology and current problems -- 5.8 Conclusion -- References. , Chapter 6 Current and future trends in food waste valorization for the production of chemicals, materials, and fuels by advanced technology to convert food wastes into fuels and chemicals -- 6.1 Introduction -- 6.2 Food valorization to produce chemicals -- 6.2.1 Multitudinous valorization methods for chemical production -- 6.3 Transformation of food waste into bioenergy -- 6.3.1 Biogas formation -- 6.3.2 Biohydrogen production -- 6.3.3 Distinctive techniques for biofuel production -- 6.4 Conclusion -- References -- Chapter 7 Biochemical conversion of lignocellulosic waste into renewable energy -- 7.1 Introduction -- 7.2 Structural and functional attributes of LCMs -- 7.2.1 Socioeconomic aspects of LCMs -- 7.2.2 Biorefinery-based bioeconomy-considerations -- 7.2.3 Biotransformation of LCMs -- 7.2.4 Enzyme-based pretreatment of LCMs -- 7.2.5 Chemical-based pretreatment of LCMs -- 7.3 Biofuels generation -- 7.4 Conclusion and perspectives -- References -- Chapter 8 Recent trends on the food wastes valorization to value-added commodities -- 8.1 Introduction-food waste and its global scenario -- 8.2 FW hierarchy -- 8.3 FW-generating sectors -- 8.4 FW valorization to worth-added commodities -- 8.5 Biotransformation of FWs -- 8.6 Value-added components recovery -- 8.6.1 Recovery of organic acids -- 8.6.2 Nutraceuticals -- 8.6.3 Nanoparticles -- 8.6.4 Dietary fiber -- 8.7 Production of biomaterials and biofertilizer -- 8.7.1 Biopolymers -- 8.7.2 Single-cell protein (microbial biomass) -- 8.7.3 Bio-based colorants -- 8.7.4 Bioadsorbent -- 8.7.5 Biofertilizer -- 8.7.6 Bio-based high value-added products -- 8.7.7 Enzymes production from FW and their application -- 8.8 Conclusion and recommendations -- References -- Chapter 9 Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels -- 9.1 Introduction. , 9.2 Lignocellulosic biomass -- 9.2.1 Sources of lignocellulosic biomass -- 9.2.2 Properties and composition of lignocellulosic biomass -- 9.3 Pretreatment techniques -- 9.3.1 Physical pretreatment technique -- 9.3.2 Chemical pretreatment technique -- 9.3.3 Physiochemical pretreatment technique -- 9.3.4 Biological pretreatment technique -- 9.3.5 Combination pretreatment technique -- 9.4 Thermochemical conversion of lignocellulosic biomass -- 9.4.1 Thermochemical lignocellulosic biorefineries -- 9.4.2 Biochemical refineries for the conversion of lignocellulosic biomass -- 9.4.3 Hybrid biorefineries -- 9.5 Conclusion -- References -- Chapter 10 Biodiesel production from waste cooking oil using ionic liquids as catalyst -- 10.1 Introduction -- 10.2 Recent trends -- 10.3 Waste cooking oil -- 10.4 Transesterification of WCO -- 10.5 Experimental analysis -- 10.5.1 Catalytic ethanolysis of waste cooking soybean oil using the IL [HMim][HSO4] -- 10.5.2 Preparation of a supported acidic IL on silica-gel and its application to the synthesis of biodiesel from WCO -- 10.5.3 Improving biodiesel yields from WCO using ILs as catalysts with a microwave heating system -- 10.5.4 Biodiesel production from WCO by acidic IL as a catalyst -- 10.5.5 Biodiesel production process by using new functionalized ILs as catalysts -- 10.6 Conclusion -- References -- Chapter 11 Valorization of waste cooking oil (WCO) into biodiesel using acoustic and hydrodynamic cavitation -- 11.1 Introduction -- 11.2 Biodiesel synthesis -- 11.2.1 Feedstock used for biodiesel synthesis -- 11.2.2 FFAs and their effect on biodiesel synthesis -- 11.2.3 Types of catalysts and its significance -- 11.3 Cavitation -- 11.3.1 Acoustic cavitation -- 11.3.2 HC and its mechanism -- 11.4 Review of current status of utilization of WCO for synthesis of biodiesel -- 11.4.1 Synthesis of biodiesel using AC. , 11.4.2 Synthesis of biodiesel using HC -- 11.5 Conclusion -- References -- Chapter 12 Production of biochar from renewable resources -- 12.1 Biochar definition -- 12.2 Biochar applications -- 12.3 Biochar production -- 12.3.1 Pyrolysis -- 12.3.2 Gasification -- 12.3.3 Hydrothermal carbonization -- 12.3.4 Other processes -- 12.4 Factors affecting biochar production -- 12.4.1 Feedstocks of biochar -- 12.4.2 Thermochemical temperature -- 12.5 Mechanism of biochar production -- 12.6 Conclusions -- References -- Chapter 13 Microbial fuel cell technology for bio-electrochemical conversion of waste to energy -- 13.1 Introduction -- 13.2 MFC technology -- 13.2.1 Technological background, performance indicators, and operating parameters -- 13.3 Role of microbial species and mechanism of electron transport in MFC -- 13.3.1 Substrate composition in MFC -- 13.3.2 Electrode material -- 13.3.3 MFC design and architecture -- 13.4 Bioenergy production from MFC -- 13.4.1 Simple substrate molecules for electricity generation -- 13.4.2 Complex wastewater used for electricity generation -- 13.4.3 Pitfalls and future prospects -- 13.5 Conclusion -- References -- Chapter 14 Case study of nonrefined mustard oil for possible biodiesel extraction: feasibility analysis -- 14.1 Introduction -- 14.2 Materials and methods -- 14.2.1 Catalyst preparation -- 14.2.2 Collection of nonrefined mustard oil -- 14.2.3 Design of experiment using Taguchi -- 14.2.4 Transesterification -- 14.2.5 Characterization of catalyst -- 14.3 Results and discussion -- 14.3.1 Characterization of catalyst -- 14.3.2 ANOVA and RSM -- 14.3.3 Effect of operating parameters -- 14.4 Conclusion -- References -- Chapter 15 Waste oil to biodiesel -- 15.1 Second-generation feedstock for biodiesel production -- 15.1.1 Used cooking oil -- 15.1.2 Grease -- 15.1.3 Animal fat -- 15.1.4 Soapstock -- 15.1.5 Nonedible oils. , 15.2 Conclusion.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Millersville, PA :Materials Research Forum LLC,
    Schlagwort(e): Coordination polymers. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: The book focusses on the following applications: gas capture and storage, especially molecular hydrogen storage; performance enhancement of Li-ion batteries; gas separation, nano-filtration, ionic sieving, water treatment, and catalysis, etc. Keywords: MOF Materials, Hydrogen Storage, Renewable Energy Applications, Lithium Batteries, MOF-Quantum Dots, Clean Energy, Nanoporous MOFs, Supercapacitors, Therapeutic Applications, Biosensing, Bioimaging, Phototherapy of Cancer, Gas Separation, Nano-filtration, Ionic Sieving, Water Treatment, Drug Delivery, Theranostics; Nanoparticle Photosensitizers, Photodynamic Therapy (PDT), Photothermal Therapy (PTT).
    Materialart: Online-Ressource
    Seiten: 1 online resource (427 pages)
    Ausgabe: 1st ed.
    ISBN: 9781644900437
    Serie: Materials Research Foundations Series ; v.58
    DDC: 547.7
    Sprache: Englisch
    Anmerkung: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks -- 1. Introduction -- 2. DFT study of site characteristics in MOFs for hydrogen adsorption -- 3. Grand Canonical Monte Carlo (GCMC) for gravimetric and volumetric uptakes -- Conclusion -- Reference -- 2 -- Metal Organic Frameworks Based Materials for Renewable Energy Applications -- 1. Introduction -- 2. Need for renewal energy -- 3. Metal organic frameworks -- 4. MOFs for environmental applications and renewable energy -- 5. Metallic organic framework based materials for hydrogen energy applications -- 6. Hydrogen Storage by MOFs -- 7. Storage of gases and separation process by MOFs -- 8. Metal organic frameworks based materials for conversion and storage of CO2 -- 9. Use of MOFs for biogas -- 10. Storage of thermal energy using MOF materials -- 11. Metal organic frameworks based materials for oxygen catalysis -- 12. MOF based materials for rechargeable batteries and supercapacitors -- 13. Metal organic framework based materials in the use of dye sensitized solar cells -- Conclusion -- References -- 3 -- Metal Organic Frameworks Composites for Lithium Battery Applications -- 1. Introduction -- 2. Applications of MOFs in lithium-ion batteries -- 3. Applications of MOFs in lithium sulphur batteries. -- 4. Summary and outlook -- References -- 4 -- Metal-Organic-Framework-Quantum Dots (QD@MOF) Composites -- 1. Introduction -- 1.1 Metal-organic frameworks -- 1.2 Quantum dots -- 1.3 Gold QDs (AuQDs) -- 2. QD polymeric materials -- 2.1 Integration of QDs -- 2.2 Methods of encapsulating QD to polymer matrices -- 2.3 Incorporation into premade polymers -- 2.4 Suspension polymerization -- 2.5 Encapsulation via emulsion polymerization -- 2.6 Encapsulation via miniemulsion polymerization -- 3. QD hybrid materials. , 3.1 Strategies to generate QD hybrid materials -- 3.2 Exchanging ligand between polymer and QDs -- 3.3 Polymer grafting to QDs -- 3.4 Polymer grafting from QDs -- 3.5 Polymer capping into QDs -- 3.6 QDs growth within polymer -- 3.7 Challenges in biocompatible polymer/QDs -- 4. Applications of QD composites -- 4.1 Bio-imaging -- 4.2 Photo-thermal therapies -- 4.3 Opto-electric applications -- 4.3.1 QD LEDs -- 4.3.2 Polymer QD liquid crystal displays -- 4.3.3 QD polymer photo-voltaic devices -- 5. Metallic NCs -- 5.1 Classification of metallic NCs -- 5.2 Production of metallic NCs -- 5.2.1 Metallic NCs synthesis methods -- 5.3 Applications of metallic nano-particles -- 5.3.1 Silver NCs -- 5.3.2 Pbs QDs -- Conclusion -- References -- 5 -- Designing Metal-Organic-Framework for Clean Energy Applications -- 1. Introduction -- 1.1 Introduction to MOF Composites & -- Derivatives -- 1.2 Chemistry of MOFs -- 2. Applications of MOF in clean energy -- 2.1 Hydrogen Storage -- 2.2 Carbon dioxide capture -- 2.3 Methane storage -- 2.4 Electrical energy storage and conversion -- 2.4.1 Fuel cell -- 2.5 MOFs for supercapacitor applications -- 2.6 NH3 removal -- 2.7 Benzene removal -- 2.8 NO2 removal -- 2.9 Photocatalysis -- Conclusion -- References -- 6 -- Nanoporous Metal-Organic-Framework -- 1. Introduction -- 1.1 Fundamental stabilities of nano MOFs -- 1.1.1 Chemical stability -- 1.1.2 In water medium -- 1.1.3 In acid/base condition -- 1.1.4 Thermal Stability -- 1.1.5 Mechanical Stability -- 1.2 Synthesis -- 1.2.1 Modulated synthesis -- 1.2.2 Post-synthetic modification (PSM) -- 1.3 Applications of MOFs -- 1.3.1 Gas separations and storage -- 1.3.2 Catalysis -- 1.3.2.1 Lewis acid catalysis -- 1.3.2.2 Bronsted acid catalysis -- 1.3.2.3 Redox Catalysis -- 1.3.2.4 Photocatalysis -- 1.3.2.5 Electrocatalysis -- 1.3.3 Water treatment -- 1.4 Other applications. , 1.4.1 Sensors -- 1.4.2 Supercapacitors -- 1.4.3 Biomedical applications -- Conclusion -- References -- 7 -- Metal-Organic-Framework-Based Materials for Energy Applications -- 1. Introduction -- 1.1 Role of MOF in supercapacitor -- 1.2 Role of MOF in oxygen evolution reaction (OER) -- 2. Synthesis of Ni3(HITP)2 MOF -- 3. Characterization of Ni3(HITP)2 MOF -- 4. Ni3(HITP)2MOF as supercapacitor electrode for EDLC : -- 5. Two electrode measurements -- 6. Electrochemical impedance (EIS) measurements -- 7. Device performance -- 8. Hybrid Co3O4C nanowires electrode for OER process -- 9. Synthesis of hybrid Co3O4C nanowires -- 10. Characterization of hybrid Co3O4C nanowires -- 11. Hybrid Co3O4C nanowires MOF electrode for oxygen evolution reaction -- Conclusion -- References -- 8 -- Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications -- 1. Introduction -- 2. MOFs: Structure, properties and strategies for SCs -- 3. Single-metal MOFs -- 4. Bimetal or doped MOFs -- 5. Hybrids and composites -- 6. Flexible or freestanding SCs -- Conclusion and Perspectives -- References -- 9 -- Metal-Organic Frameworks and their Therapeutic Applications -- 1. Introduction -- 2. Metal-organic frameworks -- 2.1 Usage areas of metal-organic frameworks -- 2.1.1 Controlled drug release -- 2.1.2 Antibacterial activity of MOFs -- 2.1.3 Biomedicine -- 2.1.4 Chemical sensors -- Conclusions and recommendations -- References -- 10 -- Significance of Metal Organic Frameworks Consisting of Porous Materials -- 1. Introduction -- 1.1 Definition of porosity -- 2. Inferences obtained from the wide range of relevant research articles -- 2.1 Introduction to porous MOFs -- 2.2 Zeolites - an amorphous & -- inorganic porous material -- 2.3 Activated carbon - an organic porous material -- 2.4 Formation of pores in MOFs -- 2.5 Types of pores. , 2.6 Characterization of porous MOFs -- 2.7 Checking for permanent porosity -- 2.8 Advantages of MOF porous materials -- 2.9 Porous MOFs in separation of gases -- 2.10 Nanoporous MOFs -- Conclusion -- References -- 11 -- Metal Organic Frameworks (MOF's) for Biosensing and Bioimaging Applications -- 1. Introduction -- 2. In vitro MOF complex sensors -- 2.1 DNA-RNA-MOF complex sensor -- 2.2 Enzyme-MOF complex -- 2.2.1 Enzymatic-MOF complex -- 2.2.2 Non-enzymatic-MOF complex -- 2.3 Fluorescent-MOF complex -- 3. In-vivo MOF complex sensors -- 3.1 MR complex -- 3.2 CT complex -- Conclusions and recommendations -- References -- 12 -- Nanoscale Metal Organic Framework for Phototherapy of Cancer -- 1. Introduction -- 2. Nanoscience and nanotechnology -- 2.1 Tumor ablation and nanotechnology in cancer treatment -- 3. Metal organic frameworks (MOFs) -- 4. Photothermal therapy (PTT) -- 5. Photodynamic therapy (PDT) -- 6. Historical development of phototherapy -- 7. Mechanism of phototherapy -- 7.1 Basic elements of photodynamic therapy -- 7.1.1 Singlet oxygen -- 7.1.2 Light sources -- 8. Photosensitizers (PSs) -- 8.1 First generation photosensitizers -- 8.2 Second generation photosensitizers -- 8.3 Third generation photosensitizers -- 8.4 Introduction of tumor cells and intracellular localization of photosensitizer -- 9. Cell death in phototherapy -- 10. nMOFs for PDT -- 11. nMOFs for PTT -- 11.1 Surface plasmon resonance (SPR) mechanism and plasmonic photothermal treatment (PPTT) method -- 11.1.1 Mie theory -- 11.1.2 Gold nanostructures -- 11.1.3 Photothermal properties of different gold nanostructures -- 11.1.4 Gold nanospheres used in photothermal therapy -- 11.1.5 Gold nanocages and nanorods used in photothermal therapy -- 11.1.6 Bioconjugation of gold nanostructures used in photothermal therapy -- 11.1.7 Determination of temperature changes in gold surface. , 12. Results and Perspectives -- References -- back-matter -- Keyword Index -- About the Editors.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...