GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1160–1181, doi:10.1175/2011JPO4547.1.
    Description: Tropical instability waves are triggered by instabilities of the equatorial current systems, and their sea level signal, with peak amplitude near 5°N, is one of the most prominent features of the dynamic topography of the tropics. Cross-spectral analysis of satellite altimetry observations shows that there is sea level variability in the Pacific Ocean as far north as Hawaii (i.e., 20°N) that is coherent with the sea level variability near 5°N associated with tropical instability waves. Within the uncertainty of the analysis, this off-equatorial variability obeys the dispersion relation for nondivergent, barotropic Rossby waves over a fairly broad range of periods (26–38 days) and zonal wavelengths (9°–23° of longitude) that are associated with tropical instability waves. The dispersion relation and observed wave properties further suggest that the waves are carrying energy away from the instabilities toward the North Pacific subtropical gyre, which, together with the observed coherence of the sea level signal of the barotropic waves with that of the tropical instability waves, suggests that the barotropic Rossby waves are being radiated from the tropical instability waves. The poleward transport of kinetic energy and westward momentum by these barotropic Rossby waves may influence the circulation in the subtropics.
    Description: Funding for this research came from WHOI’s TropicalResearch Initiative, the Charles D. Hollister Fund for Assistant Scientist Support, the John E. and Anne W. Sawyer Endowed Fund in Special Support of Scientific Staff, and Grant OCE-0845150 from the National Science Foundation.
    Keywords: Barotropic flows ; Rossby waves ; Tropics ; Pacific Ocean ; Instability ; Waves, atmospheric
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Farrar, J. T., Durland, T., Jayne, S. R., & Price, J. F. Long-distance radiation of Rossby Waves from the equatorial current system. Journal of Physical Oceanography, 51(6), (2021): 1947–1966, https://doi.org/10.1175/JPO-D-20-0048.1.
    Description: Measurements from satellite altimetry are used to show that sea surface height (SSH) variability throughout much of the North Pacific Ocean is coherent with the SSH signal of the tropical instability waves (TIWs) that result from instabilities of the equatorial currents. This variability has regular phase patterns consistent with freely propagating barotropic Rossby waves radiating energy away from the unstable equatorial currents, and the waves clearly propagate from the equatorial region to at least 30°N. The pattern of SSH variance at TIW frequencies exhibits remarkable patchiness on scales of hundreds of kilometers, which we interpret as being due to the combined effects of wave reflection, refraction, and interference. North of 40°N, more than 6000 km from the unstable equatorial currents, the SSH field remains coherent with the near-equatorial SSH variability, but it is not as clear whether the variability at the higher latitudes is a simple result of barotropic wave radiation from the tropical instability waves. Even more distant regions, as far north as the Aleutian Islands off of Alaska and the Kamchatka Peninsula of eastern Russia, have SSH variability that is significantly coherent with the near-equatorial instabilities. The variability is not well represented in the widely used gridded SSH data product commonly referred to as the AVISO or DUACS product, and this appears to be a result of spatial variations in the filtering properties of the objective mapping scheme.
    Description: This work was supported by NASA Grants NNX13AE46G, NNX14AM71G, and NNX17AH54G.
    Keywords: Pacific Ocean ; Barotropic flows ; Instability ; Planetary waves ; Rossby waves ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...