GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 290 (2010): 340-350, doi:10.1016/j.epsl.2009.12.030.
    Description: Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on cooccurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69- 71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.
    Description: This study was funded by the Helmholtz Young Investigators Group „Applications of molecular 14C analysis for the study of sedimentation processes and carbon cycling in marine sediments”. G.M. acknowledges financial support from WHOI postdoctoral scholarship program. T.I.E. was supported by NSF grant OCE-0526268. A.C.M. was supported by NSF grant ATM0602395.
    Keywords: Compound-specific radiocarbon dating ; Alkenones ; Lateral sediment transport ; Panama Basin ; Eastern Equatorial Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA1016, doi:10.1029/2004PA001103.
    Description: Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones and total organic carbon in sediments from the continental margins of Southern Chile, Northwest Africa and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000 to 4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 yrs) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2σ error or better) in the NW African and South China Sea sediments. Total-organic-matter and alkenone ages were similar off Namibia (age difference TOC-alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of pre-aged terrigenous material. In the South China Sea total organic carbon is significantly (2000-3000 yrs) older due to greater inputs of pre-aged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as sea-floor morphology, shelf width, and sediment composition, may control the age of co-occurring 2 sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregate is a key process.
    Description: GM and MK acknowledge financial support from the WHOI postdoctoral scholarship program. This work was funded by NSF grant OCE-0327405.
    Keywords: Compound-specific radiocarbon dating ; Alkenones ; High accumulation rate sediments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...