GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Age, 14C AMS; Age, 14C calibrated; Age, dated; Age, dated standard deviation; Calendar age; Calendar age, standard deviation; DEPTH, sediment/rock; Florida Strait; KN166-2; Knorr; KNR166-2; KNR166-2-51; Laboratory code/label; PC; Piston corer  (1)
Document type
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schmidt, Matthew W; Weinlein, William A; Marcantonio, Franco; Lynch-Stieglitz, Jean (2012): Solar forcing of Florida Straits surface salinity during the early Holocene. Paleoceanography, 27(3), PA3204, https://doi.org/10.1029/2012PA002284
    Publication Date: 2023-06-27
    Description: Previous studies showed that sea surface salinity (SSS) in the Florida Straits as well as Florida Current transport covaried with changes in North Atlantic climate over the past two millennia. However, little is known about earlier Holocene hydrographic variability in the Florida Straits. Here, we combine Mg/Ca-paleothermometry and stable oxygen isotope measurements on the planktonic foraminifera Globigerinoides ruber (white variety) from Florida Straits sediment core KNR166-2 JPC 51 (24° 24.70' N, 83° 13.14' W, 198 m deep) to reconstruct a high-resolution (~25 yr/sample) early to mid Holocene record of sea surface temperature and d18OSW (a proxy for SSS) variability. After removing the influence of global d18OSW change due to continental ice volume variability, we find that early Holocene SSS enrichments are associated with increased evaporation/precipitation ratios in the Florida Straits during periods of reduced solar forcing, increased ice rafted debris in the North Atlantic and the development of more permanent El Niño-like conditions in the eastern equatorial Pacific. When considered with previous high-resolution reconstructions of Holocene tropical atmospheric circulation changes, our results provide evidence that variations in solar forcing over the early Holocene had a significant impact on the global tropical hydrologic cycle.
    Keywords: Age, 14C AMS; Age, 14C calibrated; Age, dated; Age, dated standard deviation; Calendar age; Calendar age, standard deviation; DEPTH, sediment/rock; Florida Strait; KN166-2; Knorr; KNR166-2; KNR166-2-51; Laboratory code/label; PC; Piston corer
    Type: Dataset
    Format: text/tab-separated-values, 35 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...