GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI  (2)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klages, Johann Philipp; Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Smith, James A; Graham, Alastair G C; Nitsche, Frank-Oliver; Frederichs, Thomas; Jernas, Patrycja E; Gohl, Karsten; Wacker, Lukas (2017): Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period. PLoS ONE, 12(7), e0181593, https://doi.org/10.1371/journal.pone.0181593
    Publication Date: 2023-05-12
    Description: Precise knowledge about the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM; c. 26.5-19 cal. ka BP) is important in order to 1) improve paleo-ice sheet reconstructions, 2) provide a robust empirical framework for calibrating paleo-ice sheet models, and 3) locate potential shelf refugia for Antarctic benthos during the last glacial period. However, reliable reconstructions are still lacking for many WAIS sectors, particularly for key areas on the outer continental shelf, where the LGM-ice sheet is assumed to have terminated. In many areas of the outer continental shelf around Antarctica, direct geological data for the presence or absence of grounded ice during the LGM is lacking because of post-LGM iceberg scouring. This also applies to most of the outer continental shelf in the Amundsen Sea. Here we present detailed marine geophysical and new geological data documenting a sequence of glaciomarine sediments up to ~12 m thick within the deep outer portion of Abbot Trough, a palaeo-ice stream trough on the outer shelf of the Amundsen Sea Embayment. The upper 2-3 meters of this sediment drape contain calcareous foraminifera of Holocene and (pre-)LGM age and, in combination with palaeomagnetic age constraints, indicate that continuous glaciomarine deposition persisted here since well before the LGM, possibly even since the last interglacial period. Our data therefore indicate that the LGM grounding line, whose exact location was previously uncertain, did not reach the shelf edge everywhere in the Amundsen Sea. The LGM grounding line position coincides with the crest of a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, an area of 〉6000 km² remained free of grounded ice through the last glacial cycle, requiring the LGM grounding line position to be re-located in this sector, and suggesting a new site at which Antarctic shelf benthos may have survived the last glacial period.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ronge, Thomas A; Tiedemann, Ralf; Lamy, Frank; Köhler, Peter; Alloway, Brent V; De Pol-Holz, Ricardo; Pahnke, Katharina; Southon, John; Wacker, Lukas (2016): Radiocarbon constraints on the extent and evolution of the South Pacific carbon pool. Nature Communications, 7, 12 pp, https://doi.org/10.1038/ncomms11487
    Publication Date: 2024-04-20
    Description: During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 25 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...