GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158  (2)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hass, H Christian; Kuhn, Gerhard; Monien, Patrick; Brumsack, Hans-Jürgen; Forwick, Matthias (2010): Climate fluctuations during the past two millennia as recorded in sediments from Maxwell Bay, South Shetland Islands, West Antarctica. In: Howe, J; Austin, WEN; Paetzel, M and Forwick, M (eds.): Fjordic Depositional Systems and Archives, Geological Society of London Special Publication, 344, 243-260, https://doi.org/10.1144/SP344.17
    Publication Date: 2023-10-28
    Description: The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Borchers, Andreas; Dietze, Elisabeth; Kuhn, Gerhard; Esper, Oliver; Voigt, Ines; Hartmann, Kai; Diekmann, Bernhard (2015): Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica. Marine Geophysical Research, https://doi.org/10.1007/s11001-015-9254-z
    Publication Date: 2023-11-03
    Description: A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land-Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...